1 / 66

Charm and  Decays

Charm and  Decays. Results from Babar and Belle Jens Sören Lange (University of Giessen) 43 th Rencontres de Moriond QCD and High Energy Interactions La Thuile. March 9, 2008. Outline. Charm Decays D sJ decays into D*K: D s1 (2536) into DK: D sJ (2700), D sJ (2860)

sibyl
Download Presentation

Charm and  Decays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Charm and  Decays Results from Babar and Belle Jens Sören Lange(University of Giessen)43th Rencontres de MoriondQCD and High Energy Interactions La Thuile. March 9, 2008

  2. Outline Charm Decays • DsJ decays into D*K: Ds1(2536)into DK:DsJ(2700), DsJ(2860) • Ds+!+  , fDs • Charmed baryons, c Decays • Hadronic  decayswith  in final state • Hadronic  decayswith  in final state

  3. Nucl. Instr. Meth A479(2002)117 Integrated Luminosity 773.7 fb–1 Nucl. Instr. Meth. A479(2002)1 Integrated Luminosity 512.2 fb–1

  4. Charm Production at B Factories • from B decays~99% of all B mesons decay into charm final states • in continuumcross section (~1.2 nb) is as high as B meson cross section (~1.1 nb) D+ D+ D– D–

  5. A brief history of DsJ states • Babar observed Ds0*+(2317)Ds+oPhys. Rev. Lett. 90(2003)242001 • Cleo observed Ds1+(2460)Ds+*oPhys. Rev. D 68(2003)032002 • Ds in final state> most probable assignment[c s] L=1 states • ~100 MeV too low comparedto early quark modelsGodfrey, Isgur, PRD 32(1985)189 • Properties of other states in Ds system?

  6. JP 2+ DsJ(2573) jq = 3/2 L = 1 D*K threshold 1+ Ds1(2536) D K threshold jq = 1/2 1+ Ds1(2460) 0+ Ds0(2317) [cs] multiplets There are two 1+ states, mass difference m ' 76 MeV ! investigation of mixing jq = sq + L, J = jq+ sQ L = 2 ….. mix? spin-orbit tensor spin-spin Ds* 1- jq = 1/2 L = 0 Ds 0-

  7. DsJ decays 0 DsJ+ Ds+ D0 DsJ+ K+

  8. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c DsJ Decays into D*K Ds1(2536)

  9. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c 1st Observation of Ds1(2536) in B Decays • B !D(*)D(*) K at Babar347 fb–1 , PRD-RC 77(2008)011102Ds1(2536)+! D*+Ks0, D*0 K+ • Analysis of Ds1(2536) helicityfor quantum number confirmation • JP=1+ in pure S-wavewould be flat • JP=1– in pure P-waveand JP=1+with S/D-wave admixturefit both well (2/n.d.f.=9.6/9 vs. 9.3/9) PDG2007 1- 1+ 2+,–disfavoured

  10. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c Observation of Ds1(2536)→D+π–K+ • Formerly known decay modes of Ds1(2536) ! D*+Ks! D*0K+! Ds +– • Bellee+e-→Ds1(2536)X462 fb-1 Ds1(2536)→D+–K+3-body1st observationDs1(2536)→D*+Ks2-bodyused for partial wave analysis 3-body 2-body hep-ex/0709.4184 PRD 77(2008)032001

  11. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c Partial Wave Analysis Ds1(2536)→D*+K0s • Mixing of jq=1/2 and jq=3/2 states • HQET prediction for P-wave cs states: • 1+(jq=3/2)→D*K should be pureD-wave decay • 1+(jq=1/2)→D*Kshould be pureS-wave decay • If HQET not exact: mixing of S/D waves possible (by LS interaction)

  12. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c Partial Wave Analysis Ds1(2536)→D*+K0s • Helicity formalism • Fit results (syst. errors): • S-wave dominates in Ds1(2536)→D*K(72  3  1)% might contradict HQET (c quark is not infinitely heavy)note: D-wave might be suppressed by centrifugal barrier • Ds1(2460) and Ds1(2536) mix 3-dim analysisprojections shown hep-ex/0709.4184 PRD 77(2008)032001

  13. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c DsJ Decays into DK DsJ(2700), DsJ(2860)

  14. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c New DsJ meson in B+→D0D0K+ • Belle, 414 fb-1 • DsJ(2700)dominating resonance in this B decay M(D0D0)>3.85 GeV (4160) reflection arXiv:0707.3491Phys. Rev. Lett. 100(2008)092001 DsJ(2700)

  15. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c D0 K+ Quantum numbers of DsJ(2700) →D0K+ • Helicity angle distribution • J=1 preferred • 1→0–0– decay implies L=1!negative parity • DsJ(2700) JP=1– state could be: • radial excitation 23S1predicted by potential models at m~2720 GeVClose, Swanson, PLB 647(2007)159 • chiral doublet state 1–to 1+ Ds1(2536) predicted from chiral symmetryat m=2721±10MeVNowak, Rho, Zahed, Acta Phys. Polon. B35, 2377 (2004) J=02/ndf=112/5 J=12/ndf= 11/5 J=22/ndf=146/5

  16. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c DsJ(2860) and DsJ(2700) at Babar and Belle • Babar, 240 fb–1in e+e– continuumPRL 97(2006)222001 • evidence for a new DsJ statem=2856.6±1.5±5.0 MeV=48±7±10 MeV • Babar observes 3 structures • Ds2(2573)+ • a broad structure peaking around 2.7 GeV! DsJ(2700)? • DsJ(2860)!not seen in Belle dataprobably in B decays suppressed by high spin? DsJ(2700)? DsJ(2860) Ds2(2573) DsJ(2700)? DsJ(2860)

  17. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c Ds+!+ '1 • Pure leptonic decay, mediated by single W boson • Br measurement allows determination of fDs

  18. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c Ds+!+  • Babar, 230.2 fb–1PRL 98(2007)141801489§55 events • Belle, 548 fb-1arXiv:0709.1340subm. to Phys. Rev. Lett.169§16§8 events • Signal peaks inM()–M()=143.5 MeVormrecoil(DKX)=m=0 • Background shapeDs+! e+suppressed by factor (m/me)2 ~105

  19. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c Ds+!+ and fDs • Comparison to theorysee Rosner, Stone, arXiv:0802.1043 • recent Lattice QCD calculationPhys. Rev. Lett. 100(2008)062002fDs=241§3 MeVa=0.09 fm, grid 283 x 96,incl. sea quarks • indication for new physics?

  20. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c cccc Charmed Baryons: Studies of the c system

  21. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c A brief history of c charmed baryons • c+K–+ final state is usedfor searches of double charm baryon ground states (ccq) weak decays • However, Belle observed two new statesc(2980)+,0!c+ Ks0–c(3077)+,0!c+ Ks0 • These are strong decays • Why is this surprising?formerly only knowndecays c* ! c  or c  • Here, the strange and the charm quark are observed in different hadrons Belle, hep-ex/0606051 Phys.Rev.Lett. 97(2006)162001

  22. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c Evidence for two new c states • Babar 384 fb-1Phys. Rev. D 77(2008)012002 • Confirmation ofc(2980) and c(3077) • Final state c K but require  invariant mass • Evidence for two new statesc(3055)+!c(2455)++ K–6.4(JP=1/2+) and c(3122)+!c(2520)++ K–3.6(JP=3/2+) • A new Puzzlewhy decay into c(isospin=1) K?usc ! uucus c(2980) c(3055) c(3077) Cut on c(2455) c(3122) c(3055) Cut on c(2520)

  23. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c Excited c Transistions • Belle, 414 fb-1, hep-ex/0802.3968 subm. to Phys. Lett. B • Is the c (2980) the first positive parity excitation of the c? (mass could be high enough) • Or higher radial (n¸2) excitation? • New decay mode observedc*(2980) !c*(2645)  • Single  transitions give hintsfor quantum number assignmente.g. c(2815)(3/2–) !c  is forbiddenc(2815)(3/2–) !c(2645)  ! c   seen by Cleo • This decay mode (assume S-wave) is predicted dominant for c1(½+) c(2815) c(2980)

  24. Ds1(2536)DsJ(2700)Ds!Charmed Baryons c Indication of another c state • BABARPRD-RC 77, 031101 (2008) 210 fb-1in B decaysB–! [K–c+] c–Dalitz analysis • c(2930) ? • Predicted density of states in this mass region is high

  25. Hadronic Tau Decays Hadronic  Decays with Hadronic  Decays with 

  26. Hadronic  Decays with Hadronic  Decays with   Decays with  final state • Belle, hep-ex/0708.0733485 fb-1, 446x106 +–Uncertainties on Br‘s improved by factor 4-6 • 3 pseudoscalar meson case:Wess-Zumino termmight increase Br by factor ¸10–! K–0Br = (4.7§1.1§0.4) x 10–5–!–0Br = (1.39§0.03§0.07) x 10–3 • –!–0also breaks G parity! suppressed by factor ~(md – mu)2 • Ongoing work(requires separation of resonant and non-resonant part)

  27. Hadronic  Decays with Hadronic  Decays with  F peak in t- K-p-K+n & t- K-K+K-n  Decays with  final state K-K+K- • BABAR342 fb–1Phys.Rev.Lett.100(2008)011801 • –! K+ K– K– • Cabbibo suppressed (Vus~0.2) • Resonant  is saturating! excluding , upper limit Br < 2.5 x 10–6 • consistent with BellePhys. Lett B643(2006)5

  28. Hadronic  Decays with Hadronic  Decays with  F peak in t- K-p-K+n & t- K-K+K-n  Decays with  final state K-p-K+ • BABAR342 fb–1Phys.Rev.Lett.100(2008)011801 • First measurement of –! K+ K– –Br = (3.42§0.55§0.25) x 10-5 • OZI suppressed –

  29. Summary • Results from Belle and Babar presented forDs1(2536), DsJ(2700), DsJ(2860), c**, Ds!, fDsHadronic  decays with  and  final statesThank you for your attention.

  30. Backup Slides

  31. Ds+!+ analysis technique • Analysis technique: • full reconstructione+ e–! Ds* D,0 K,0Xwhere X=n and · 1 • Tag side:DK, with D ! K n, n=1,2,3 • Signal side:Ds*! Ds (reconstructed in the recoilagainst DKX) • In the Ds sample • Require 1  • Use Ds!e eas background shape(expected Br factor ~105 smaller) 32100 §1490 inclusive Ds decays

  32. Ds+!+ Reconstruction Method Lauranz Widhalm, HEPHY

  33. Ds+!, Comparison of Analyses Belle • Efficiency depends strongly on number of pions • p*(D)>2.0 GeV/c • p*(Ds)>3.0 GeV/c • p*(K) < 2.0 GeV/cElab()>150 MeV • Mass-constrained vertex fitfor Ds* and Ds Babar • Efficiency cancels in partial width ratio (Ds+!+)/ (Ds+!+) • p*(+ )>1.2 GeV/c • *>38o • |p(Ds*+)| cut • E*>115 MeV • cos(,D)<0.9 • Emiss* cut

  34. Ds+!, Comparison of Backgrounds Belle • MC studies show • Non-Ds decays ~18% • Leptonic  decays ~7%(!) • Semileptonic Ds decays ~3.6%with undetected low p hadrons • Hadronic Ds decays <2% Babar • e+ e–! f anti-fwith no charmor incorrect tag ~42% • Leptonic  decays ~26%(!) • Pure leptonic D! or Ds! missing the signal chain~20% • Other backgrounds • charged  misidentified as  ~1% • incorrectly chosen  candidate ~10%

  35. fD • fD+=222.6§16.7 +2.8–3.4 MeVCLEOfor 47§7 D+!+ eventsPhys. Rev. Lett. 95(2005)251801 • Lattice fD+=208§4 MeV

  36. fB – Lattice QCD vs. Experiment • BellePhys.Rev.Lett. 97 (2006)251802 hep-ex/0604018v3414 fb-1 • Br(B-!–tau) = (1.79 +0.56–0.49(stat) +0.46–0.51(syst))*10–4 • This implies that fB = 0.229+0.036–0.031(stat) +0.034–0.037(syst) GeV • The B meson decay constant from unquenched lattice QCDHPQCD CollaborationAlan Gray et al.Phys.Rev.Lett. 95(2005)212001hep-lat/0507015

  37. Status of Charmed Baryons R. MizukarXiv:0712.0310

  38. Charmed Baryon 5/2 States • Rosner et al.hep-ph/0612332 • L ' 300 MeV 3122 3077 3055 2980 2940!D0p 2880!D0p c(2880)+!c(2455)0,+++,− 5/2+ 5/2- Belle

  39. Possible  transitions in c system • hep-ph/0610283Chen and Chui • L is orbital momentumof light quark

  40. G. Marchiori, NOW 2006

  41. D** • assume heavy quark symmetrymcharm • light quark couples to L first • thenL=1 states are 2 doubletsjq=1/2broad (decay by  S wave)jq=3/2narrow (decay by  D wave)

  42. D** • BELLE observes the two broad D** (jq=1/2) L=1 statesPhys. Rev. D69(2004)11200265.4 Mill. BB • mass widthD*0(J=0) 2308171528 MeV 276211860 MeVD´1(J=1) 2427262015 MeV 384+107-752470 MeV D+K+D*+Do+DoK+DoK++ D2* can decay to D and D*

  43. Confirmation of new DsJ States • BELLE confirmed bothand observed DsJ+(2460)Ds+ Phys. Rev. Lett. 92(2004)012002 • seen in both production mechanisms • e+ecc • B decay > important for determination of quantum number not Ds* !

  44. DsJ quantum numbers • observation in B decays enables helicity analysis (fixed initial state) JP=0+ JP=1-

  45. Theory Experiment Compare D and Ds systems • should be similar (except smaller mass splitting jq=1/23/2 due to s quark mass) • why are the Ds jq=1/2 states narrow (and the D states broad) ?isospin violation (from I=0 to I=1) • but measured DsJ masses >100 MeV lower than potential model

More Related