high school science priority expectations l.
Skip this Video
Loading SlideShow in 5 Seconds..
High School Science Priority Expectations PowerPoint Presentation
Download Presentation
High School Science Priority Expectations

Loading in 2 Seconds...

play fullscreen
1 / 52

High School Science Priority Expectations - PowerPoint PPT Presentation

  • Uploaded on

Welcome to the Roll Out of the. High School Science Priority Expectations. An ISD/RESA/RESD Collaborative Document. “Preparing for the next generation of science standards”. Presented by. HS Science Priority Expectations. Today’s Connector.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about 'High School Science Priority Expectations' - sandra_john

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
high school science priority expectations

Welcome to the Roll Out of the

High School Science Priority Expectations

An ISD/RESA/RESD Collaborative Document

“Preparing for the next generation of science standards”

Presented by

today s connector

HS Science Priority Expectations

Today’s Connector

Stand up and gather with others who teach the same science course as you. (If there are groups larger than 5, split into smaller groups of at least 3).

Introduce yourselves to one another.

Ensuring that everyone expresses a view, discuss this question: “What is the most important learning outcome of your course?”

Be prepared to summarize your conclusions to the whole group.


We are being pulled in three directions

It seems that accountability is clashing with best practice.

The HS SCIENCE PRIORITY EXPECTATIONS Document is the remedy for our dilemma!

workshop objectives

HS Science Priority Expectations

Workshop Objectives

To promote the awareness and appropriate use of the new “HIGH SCHOOL SCIENCE PRIORITY EXPECTATIONS” document.

To ensure that participants understand the vision and “state of the art”/ “best practice” recommendations that guided the design of the template.

To develop the ability to analyze and evaluate lessons in light of the vision that guided the design of the document.

session agenda

HS Science Priority Expectations

Session Agenda
  • Opening: objectives
  • Teaching science well
  • Recommended “state of the art” or “best practice” in science teaching
  • Priority Expectations design
  • Sample lesson
  • Michigan Merit Exam
  • High School Graduation
  • Evaluating lessons
  • Conclusions
the importance of science education
The Importance of Science Education

Is our work really that important?

Does every science teacher really have to be great?

  • Read the essay “The Importance of Teaching Science Well,” choose and underline a sentence or short passage with which you strongly agree . This is your “Golden Line.”
  • After others in your group have finished reading, share your Golden Lines with one another and discuss your thoughts, especially in regard to specific students you know.



The Impact on Standards, Curriculum, Instruction and Assessment

“Many existing standards and assessments, as well as the typical curricula in use, contain too many disconnected topics given equal priority. ….the next generation of standards and curricula should be structured to identify a few core ideas in a discipline …”

From Taking Science to School, NRC, 2008


The Impact on Standards, Curriculum, Instruction and Assessment

A common mantra:

“Fewer, Clearer, Higher”


The Impact on Standards, Curriculum, Instruction and Assessment

“The committee made this choice (of fewer concepts) to avoid shallow coverage of a large number of topics and to allow more time for teachers and students to explore each idea in greater depth.”

(continued on next slide)

On Vision, from Conceptual Framework for Science Education, DRAFT 2010


The Impact on Standards, Curriculum, Instruction and Assessment

“Reduction of the sheer sum of details to be mastered gives time for students to engage in scientific investigations and argumentation and to achieve depth of understanding of the material that is included.”

On Vision, from Conceptual Framework for Science Education, DRAFT 2010


What Do Scientists Really Do?

How different is the real world of science from

science education in a classroom?

  • Sort a stack of cards into 2 columns based on your sense of whether their statements represent ‘what scientists do’ versus ‘what students do in a typical science classroom.’
  • Use the blank cards to annotate your sort, as another group will visit your table in a Gallery Walk.

ACTIVITY: (for pairs)

During the Gallery Walk, leave a comment for the group(s) you visit.


Results of State of the Art Practice

  • Students should LOVE science!
  • Central (big) ideas in science are emphasized and taught in depth.
  • Students construct their understanding of concepts through explorations, discussions and writing (e.g., 5-E inquiry).
  • Students develop competencies ‘doing’ science, especially providing explanations based on evidence and reasoning, but also testing ideas using models and data.

We have been looking at

‘State of the Art Practice’

in Science Education

Now lookat how these principles guided the design of the

High School Science

Priority Expectations Document


High School Science

Priority Expectations Document

How it came to be

The design of the unit template

development an isd resa resd collaborative

High School Science

Priority Expectations Document

Development - An ISD/RESA/RESD Collaborative

An effort to prevent many different sets of ‘Power Standards’ from developing all over the state

The group developed the unit template and agreed to align to the MDE Companion Documents

Field testing asked how a teacher may be reoriented after reading the document

Statewide rollout conducted by the Michigan Mathematics Science Center Network

Future collaboration will connect more detailed instructional resources to the documents


Unit Title

From MDE Companion Documents.


Big Picture Graphic Depicts unit content as a concept map with reference to the disciplinary processes and patterns of reasoning used in science.


Big Idea and Core Concept:

Describes central, big ideas and core concepts of the unit. They should be learned in depth as the focus of instruction and assessment.


Inquiry, Reflection and Social Implications

Identifies HSCE’s from Standard 1 within the content of the unit, including instructional suggestions to engage students in the practices of science as they relate to the unit content.

The inquiry HSCE’s are part of the instructional design in all units.


Content Expectations

All of the MDE Companion Document expectations are listed in this area. “Priority Expectations” are identified in the shaded text. These should be the focus of instruction and assessment, as depicted by the “Big Ideas” and “Core Concepts.”


What are the characteristics

of a Priority Expectation?

(shaded expectations)

Point to the central ideas of the discipline (big ideas and core concepts)

Lend themselves to rich student investigations

Readily connect to

critical societal concerns


What about those not identified

as a Priority Expectation?

(unshaded expectations)

Redundant with others; there are better worded HSCE’s

Arbitrarily or overly specific tasks

(i.e., reads like a NAEP expectation)

Not strongly connected to core concepts

Esoteric, as though part of a bachelor of science program in a science major


Let’s look at a lesson for this

instructional suggestion ….

“Students can explore the changing model of the atom to gain a better understanding of the development of the current model and the dynamic nature of science.”

… through a “State of the Art Practice” lens

four strands of science learning
“Four Strands of Science Learning”

Strand 1

Reflecting on Scientific Knowledge

A Lens for Evaluating Lessons

Understanding Scientific Explanations

Generating Scientific Evidence

Participating Productively in Science

Strand 2

Strand 3

Strand 4

From Ready, Set, Science

National Academies Press, 2008

four strands of science learning31
“Four Strands of Science Learning”

A Lens for Evaluating Lessons

  • Review Unit 1 of the Chemistry section of the Priority Expectations document
  • Review a lesson for Unit 1 that will support an instructional suggestion in the template
  • Evaluate the lesson using the Four Strands Checkbric. Describe the evidence that supports your conclusions. Suggest modifications.
  • Read the Four Strands excerpt

Lesson: The Size of a Nucleus: How Big is Small?

borrowed from Active Physics to support

Chemistry Priority Expectation Unit 1, Atomic Theory


Your conclusions?

Record your group’s answers on the large poster paper

If you rated a strand less than “fully meets intent of strand”, be prepared to suggest modifications that would enhance the lesson design

When finished, post your work on the wall in order of strands


Accountability and

State of the Art Practice

Our two main accountability systems (MME, HS Graduation Requirements) don’t need to thwart research-based and recommended instructional practice


Required for graduation

108 HSCE

122 HSCE

124 HSCE

131 HSCE

Required for State Test (MME)

act science test
ACT Science Test

40 questions / 35 minutes (20 questions count on MME)

Research Summaries (45%) descriptions of one or more related experiments

questions focus on the design of experiments and the interpretation of experimental results

Percentages represent percent of 40 total science items on the ACT

act science test39
ACT Science Test

40 questions / 35 minutes (20 questions count on MME)

Data Representation (38%) graphic and tabular material similar to that found in science journals and texts

questions associated with this format measure skills such as graph reading, interpretation of scatter plots, and interpretation of information presented in tables, diagrams, and figures

Percentages represent percent of 40 total science items on the ACT

act science test40
ACT Science Test

40 questions / 35 minutes (20 questions count on MME)

Conflicting Viewpoints (17%) expressions of several hypotheses or views that, being based on differing premises or on incomplete data, are inconsistent with one another

questions focus on the understanding, analysis, and comparison of alternative viewpoints or hypotheses

Percentages represent percent of 40 total science items on the ACT


ACT and

College Readiness Standards


In addressing the “College Readiness Standards” (largest portion of the MME):

  • teachers can utilize ‘state of the art’ instructional practices
  • and emphasize the practices central to the scientific enterprise.
  • emphasizing core concepts in each discipline
  • better serves students
  • rewards schools with Improved MME scores.

The MME does NOT have to thwart state of the art practice.

In fact, it should encourage it.


Mike Flanagan,

State Superintendent

MEMO (excerpts):

The content expectations should serve as a guide to local districts …

They should not be viewed as a list of items that must be checked off one by one. With only so many instructional hours available each year, we know that there is no way for schools to cover in depth every HSCE, nor should districts make that attempt.

(Summer, 2009)


Mike Flanagan,

State Superintendent

Several ISDs and school districts have already begun the work of developing "power," "target," "essential skills" or "focus" standards by combining similar HSCEs, grouping, or clustering the more "grain-sized" content expectations within the broader HSCEs. This approach also allows for shaping interdisciplinary learning. These power or target standards could help districts make decisions on how to award credit in that subject area.

(Summer, 2009)


Deborah Clemmons,

Senior Policy Advisor to the Chief Academic Officer (MDE)

“This is good and appropriate work and does not require MDE endorsement.  Our position is that  local and intermediate agencies need to have the flexibility and options to develop, select and or adopt any research or evidenced based strategies and/or emerging and best practices that they feel will help schools to be more effective. As you move forward in support of the priority expectations, we expect and anticipate that achievement in science will increase significantly across the state for all students.”

(May 2010)


School districts

  • Retain prerogative to make choices on what central ideas in our standards are emphasized.
  • Remain in control of how proficiency is defined and what proficiencies warrant the granting of credit.

High school graduation requirements do NOT have to thwart ‘state of the art’ instructional practice in science.


Additional Evaluation of Lessons

  • Physics: The Buggy Motion Lab
  • Chemistry: pHooey!
  • Biology: What Goes Around Comes Around
  • Earth Science: Discovering Plate Boundaries

Determining Earth’s Internal Structure


Why should we use the new High School Science Priority Expectations Document? (from Overview Section)

  • To assure quality, ‘state-of-the-art’ science curriculum and instruction.
  • To define course graduation credit in a deliberate and informed way.
  • To improve the reliability and validity of assessments.
  • To better prepare students for the MME.
let s not allow mistaken assumptions about accountability make us loose our heads
Let’s not allow mistaken assumptions about accountability make us loose our heads!

What’s at Stake?

  • Enduring comprehension
  • Opportunities to design
  • Problem solving skills
  • Inquiry skills
  • Writing to learn
  • Talk and argument
  • Reasoning skills
  • A love of science

Your Next Steps

  • Individually consider the action necessary for the Priority Expectations document to make a difference for your students.
  • Write the actions into a template and share with those in your group.