200 likes | 351 Views
TRIPLE INTEGRAL OVER A BOX. Consider a function w = f (x, y, z) of three variables defined on the box B given byDivide B into sub-boxes by dividing the interval [a, b] into l subintervals of equal width ?x, dividing [c, d] into m subintervals of equal width ?y, and dividing [r, s] into n subinte
E N D
1. Section 16.7 Triple Integrals
2. TRIPLE INTEGRAL OVER A BOX
3. TRIPLE INTEGRAL OVER A BOX (CONTINUED)
4. TRIPLE INTEGRAL OVER A BOX (CONCLUDED)
5. FUBINIS THEOREM FOR TRIPLE INTEGRAL
6. EXAMPLE
7. TRIPLE INTEGRAL OVER A BOUNDED REGION
8. TYPE 1 REGIONS
9. TYPE 1 REGIONS (CONTINUED)
10. TYPE 1 REGIONS (CONCLUDED)
11. EXAMPLE
12. TYPE 2 REGIONS
13. TYPE 3 REGIONS
14. EXAMPLE
15. VOLUME AND TRIPLE INTEGRALS
16. EXAMPLE
17. MASS
18. MOMENTS
19. CENTER OF MASS
20. MOMENTS OF INERTIA
21. EXAMPLE