330 likes | 432 Views
Explore the significance of Fractional Factorial Designs in experimental setups and learn how to efficiently list and catalog unique designs. Understand the implications of isomorphism and computational challenges in identifying unique designs.
E N D
Listing Unique Fractional Factorial Designs – I Abhishek K. Shrivastava September 25th, 2009
Outline • Fractional Factorial Designs (FFD) What are experiments & designs?What are FFDs? Why is there a list? Are there many FFDs? Design isomorphismListing designs Listing unique designs – brute force gen • Listing Unique designs • Graphs & designs What are graphs?FFDs as graphs • FFDI & GI Solving GI – canonical labeling (nauty)Implications to generating design catalogs Abhishek K. Shrivastava, TAMU
Experiments • Experiments for quantifying effect of causal variables Effect of process parameters on product quality Source: http://www.emeraldinsight.com/fig/0680170207035.png Miller-Urey Experiment Source: http://www.physorg.com • Experiments for testing hypothesis Abhishek K. Shrivastava, TAMU
Analyze datay = Xb+e Experimental Designs • Choose variable settings to collect data • Replicate runs • Randomize run order Collect Data Experimental plan Experimental design Make inferences Abhishek K. Shrivastava, TAMU
Experimental Designs factors a run Levels of factor I Experimental design Abhishek K. Shrivastava, TAMU
Experiments with 5 factors • Suppose each factor has 2 runs Choice of design? • Full factorial, i.e. 25 = 32 runs • Too many runs (2n) • Fractional factorial design (FFD) • Pick some subset of full factorial runs • Many fractional factorial designs exist • 25–2 design with 8 runs • Generated using defining relations D=BC and E=AB (regular FFD) Abhishek K. Shrivastava, TAMU
Listing FFDs • Using FFDs • Reduces experimenter’s effort • But at a cost! • Hypothetical example: 25–2 design with D=A, E=AB • Can estimate effect of A+D • Many different FFDs with different statistical capability • How do you choose an FFD?? Abhishek K. Shrivastava, TAMU
Design catalogs • Catalog of 16-run regular FFDs (Wu & Hamada, 2000) • Compare statistical properties to choose Issues: • Large size regular FFDs not available? • Other classes of FFDs not available Abhishek K. Shrivastava, TAMU
Unique designs: 7-factor FFD example • 7 factors: • Cutting speed . . . . . . . . • Feed . . . . . . . . . . . . • Depth of cut . . . . . . . . • Hot/cold worked work piece . • Dry/wet environment . . . . • Cutting tool material . . . . . • Cutting geometry . . . . . . A B C D E F G Abhishek K. Shrivastava, TAMU
Unique designs: 7-factor FFD example • 7 factors: • Cutting speed . . . . . . . . • Feed . . . . . . . . . . . . • Depth of cut . . . . . . . . • Hot/cold worked work piece . • Dry/wet environment . . . . • Cutting tool material . . . . . • Cutting geometry . . . . . . . A B C D E F G A C B D F E G (a) Defining words: {ABE, ACF, BDG} (b) Defining words: {ABE, ACF, CDG} Abhishek K. Shrivastava, TAMU
Unique designs Reordered matrix, exchanged columns B↔C, E↔F, reordered rows in (a) (b) Defining words: {ABE, ACF, CDG} Abhishek K. Shrivastava, TAMU
Unique designs • Designs (a) & (b) • are isomorphic under factor relabeling & row reordering • have same statistical properties (a) Defining words: {ABE, ACF, BDG} (b) Defining words: {ABE, ACF, CDG} Abhishek K. Shrivastava, TAMU
FFD Isomorphism (FFDI) • Definition. Two FFD matrices are isomorphicto each other if one can be obtained from the other by • some relabeling of the factor labels, level labels of factors and row labels. • FFDI problem. Computational problem of determining if two FFDs are isomorphic. Abhishek K. Shrivastava, TAMU
Design catalogs • No two designs should be isomorphic • Non-isomorphic catalogs • Why? • Isomorphic designs are statistically identical • Discarding isomorphs can drastically reduce catalog size • e.g., # 215–10 designs > 5 million, where # unique (i.e, non-isomorphic) designs is only 144! Abhishek K. Shrivastava, TAMU
add column/ factor add column/ factor add column/ factor add column/ factor … 24 Full factorial 5-factor FFD 6-factor FFD 7-factor FFD Listing Unique FFDs • Consider 16-run designs – sequential generation • How do you pick these columns?? FFD class • Regular FFD: defining relation E=AB, F=AC, G=BD • Orthogonal arrays: added column keeps orthogonal array property • All possible choices of columns gives the catalog Abhishek K. Shrivastava, TAMU
discard isomorphs 7-factor designs from 6-factor designs ... 24 design Non-isomorphic 5-factor designs Non-isomorphic 6-factor designs Non-isomorphic 7-factor designs Intermediate step Listing Unique FFDs • Consider sequential generation of 16-run designs • Note: reducing # intermediate designs will speed up the algorithm • How to discard isomorphs? Abhishek K. Shrivastava, TAMU
Solving FFDI: literature review Two types of tests in literature • Necessary checks • faster • Word length pattern, letter pattern matrix, centered L2 discrepancy, extended word length pattern, moment projection pattern, coset pattern matrix • Necessary & Sufficient checks • slower / computationally expensive • exhaustive relabeling, Hamming distance based, minimal column base, indicator function representation based, eigenvalues of word pattern matrices (conjectured) • Legend: • Regular FFDs only • All FFDs Fastest; 2-level regular FFDs only Abhishek K. Shrivastava, TAMU
… … Proposed FFDI solution (in a nutshell) • Graph models for FFDs • Equivalence between FFDI and GI • Solving GI Construct graphs from FFDs Solve graph isomorphism problem FFD class specific Abhishek K. Shrivastava, TAMU
Graphs and FFDs • Graphs & Graph isomorphism • 2-level regular FFDs • Multi-level regular FFDs • Non-regular FFDs • 2-level regular split-plot FFDs
Some 2-level regular FFD terminology • Defining relations: E=AB, F=AC, G=BD • E=AB E=(A+B) mod 2 • (A+B+E) mod 2 = ABE = I (identity) • Defining words: ABE, ACF, BDG • Other words (by mod-2 sum), e.g., BCEF (= ABE+ACF) • Defining contrast subgroup – all words generated from defining words • S = {I, ABE, ACF, BDG, BCEF, ADEG, ABCDFG, CDEFG} A regular 27–3 design Abhishek K. Shrivastava, TAMU
2-level regular FFD isomorphism (rFFDI) • Two regular FFDs, represented by their defining contrast subgroups S1, S2 are isomorphicto each other iff • one of S1 or S2 can be obtained from the other by some permutation of factor labels and reordering of words. • Example: two 7-factor designs, S1 = {I, ABE, ACF, BDG, BCEF, ADEG, ABCDFG, CDEFG}, S2 = {I, ABE, ACF, CDG, BCEF, ADFG, ABCDEG, BDEFG} S1 = {I, ABE, ACF, BDG, BCEF, ADEG, ABCDFG, CDEFG} B↔CE↔F S1' = {I, ACF, ABE, CDG, CBFE, ADFG, ACBDEG, BDFEG} rewrite S1' = {I, ABE, ACF, CDG, BCEF, ADFG, ABCDEG, BDEFG} S2 Abhishek K. Shrivastava, TAMU
2-level regular FFDs as bipartite graphs Example: n = 7, S = {I, ABE, ACF, BDG, BCEF, ADEG, ABCDFG, CDEFG} • Start with G(V,E) = empty graph (no vertices); V = VaVb • For each factor in d, add a vertex in Va • For each word in S, except I , add a vertex in Vb • For each word in S, except I , add edges between the word’s vertex (in Vb) and the factors’ vertices (in Va) Abhishek K. Shrivastava, TAMU
2-level regular FFD isomorphism problem Bipartite graph isomorphism Bipartite graph isomorphism • [Bipartite graph isomorphism problem] Given two graphs, does there exist a graph isomorphism that preserves vertex partitions. • Is GI-complete • Same computational complexity as GI • FFD to Graph conversion takes O(n|S|)steps Abhishek K. Shrivastava, TAMU
Multi-level designs as Multi-graphs • Multi-graph representation of a 35–2 design with defining contrast subgroup {I, ABCD2, A2B2C2D, AB2E2, A2BE, AC2DE, A2CD2E2, BC2DE2, B2CD2E} • Similar representation for mixed level designs Abhishek K. Shrivastava, TAMU
Non-regular designs as Vertex-colored graphs • Vertex-colored graph representation A 4-factor, 5-run design *edges colored only for better visualization Abhishek K. Shrivastava, TAMU
Non-regular FFD isomorphism problem Vertex colored graph isomorphism Vertex-colored graph isomorphism • [Vertex colored graph isomorphism problem] Given two graphs, does there exist a graph isomorphism that preserves vertex colors. • Is GI-complete • Same computational complexity as GI Abhishek K. Shrivastava, TAMU
2-level regular split-plot FFD (FFSP) • FFDs with restricted randomization of runs • Turning part quality example • Cutting speed (A), depth of cut (B), feed (C) is not to be changed after every run • Two groups of factors • Whole plot factors: difficult to change, e.g., A, B, C in above example • Sub-plot factors: easy to change, e.g., d, e, f and g in above example • Relabeling A ↔ d not permitted anymore Abhishek K. Shrivastava, TAMU
Regular FFSPs • Regular fractional factorial designs with restricted randomization • Uniquely represented by defining contrast subgroup • e.g., 2(3–1)+(4–2) design with C=AB, f=de, g=Bd • Defining relations for whole plot factors have no sub-plot factors, e.g., C=AB • Defining relations for sub-plot factors have at least one sub-plot factor A 2(3–1)+(4–2) design matrix Abhishek K. Shrivastava, TAMU
FFSP Isomorphism • [Definition V.1] Two FFSP matrices are isomorphicto each other if one can be obtained from the other by • some relabeling of the whole-plot factor labels, sub-plot factor labels, level labels of factors and row labels. • [Proposition V.2] Two FFSPs, represented by their defining contrast subgroups S1, S2 are isomorphicto each other iff • one of S1 or S2 can be obtained from the other by some permutation of whole-plot factor labels and sub-plot factor labels, and reordering of words. Abhishek K. Shrivastava, TAMU
FFSPs as vertex-colored graphs • Vertex-colored graphs • Each vertex has color • Graph construction • Similar to regular FFDs • Whole-plot factors, sub-plot factors, words – all have different colors • Other variants: split-split-plot designs, non-regular split-plot designs Abhishek K. Shrivastava, TAMU
GI and FFDI • Solving GI: canonical labeling • Implications to listing FFDs efficiently …next week