slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Molecular Geometry and Polarization PowerPoint Presentation
Download Presentation
Molecular Geometry and Polarization

Loading in 2 Seconds...

play fullscreen
1 / 65

Molecular Geometry and Polarization - PowerPoint PPT Presentation


  • 149 Views
  • Uploaded on

Molecular Geometry and Polarization. Shapes of Molecules. Valence Shell Electron Pair Repulsion Theory (VSEPR) a. Bonded electrons b. Lone Pairs. 1. Linear (180 o ) BeH 2 CO 2. 2. Trigonal Planar (120 o ) NO 3 -. 3. Tetrahedral (109.5 o ) CH 4.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Molecular Geometry and Polarization' - rinah-solomon


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide2

Shapes of Molecules

Valence Shell Electron Pair Repulsion Theory (VSEPR)

a. Bonded electrons

b. Lone Pairs

slide10

O

H

H

slide16

Shapes of Molecules

Ex: Multiple Bonds:

N2

H2CO

HCN

SO2

slide22

SO22+

SO22-

SO2

SO3

SF3-

PF4-

XeCl5+

BrF4-

slide23

Predict the molecular geometry of:

SnCl3-

O3

SeCl2

CO32-

SF4

IF5

ClF3

ICl4-

slide24

WarmUp

  • ClF4-

SiCl3-

SO2

  • SCl4

SeO3

BrCl5

BrCl3

slide28

Polar Molecules

1. Polar molecule – Overall, the electrons are attracted more to one end of an entire molecule

2. Non-Polar Molecule – The electrons are spread out evenly over the entire molecule

-/ + Partial (not full) charges

slide29

Examples:

H2 H2O

CH4 H2CO

slide30

Electron Density

H2 H2O

CH4 H2CO

slide32

Polar Molecules

BeCl2

NH3

CO2

SO2

SF6

BCl3

CH2Cl2

slide33

SCO CH3F

BH2Cl PH3

slide34

CHF3 CH2F2

SO3 SO32-

NF3 CH3CHO

slide35

Hybrid Orbitals

  • A mixing of the atomic orbitals (s, p, d, f) of the central atom
  • Electrons no longer move in the old orbitals, but in a new pattern
slide36

BeF2

Isolated Be 1s22s2 (Note that all Be:

electrons are paired)

To bond Be must unpair some electrons:

Bonded Be 1s22s12p1 •Be•

slide37

Be is called an “sp” hybrid.

  • Drawings:

Isolated BeBeF2

slide40

CH4

Isolated C 1s22s22p2

Bonded C 1s22s12p3

slide41

Isolated C

Bonded C

sp3

slide42

Effect of Lone Pairs

  • Lone pairs do count towards hybridization
  • Ex: H2O
slide44

Examples

CCl4

NH3

PF5

SF6

XeF4

BrF3

slide45

PH3

H2S

SF5-

SF4

CO32-

HCN

BrCl3

CH4

slide46

H2S

SO2

SO22-

AsCl5

ClF3

KrF4

slide48

Hybrid Orbitals and Multiple Bonds

  • sigma () bonds – single bonds formed by hybrid orbitals
  • pi () bonds – double or triple bonds, not formed by hybrid orbitals

H H

H – H C=C :N=N:

H H

One  bond One  bond plus One  bond plus

one  bond two  bonds

slide49

Consider C2H4

  • Each C is sp2
  • Double bond does not count toward hybridization
slide51

Consider C2H2

  • Each C is sp hybridized
  • Twobonds do not count toward hybridization
slide52

What is the hybridization and bonding types for

H2CO? Also, what are the bond angles?

slide53

What is the hybridization and bonding types for

acetonitrile (shown)? Also, what are the bond angles?

H

H - C -C=N:

H

slide54

Delocalized Bonding

  • Adjacent multiple bonds can overlap.
  • Benzene (C6H6)
  • All bond lengths are equal
slide61

12 a) ~110o b) BF3 flat (no lone pair)

21. a) (lin)lin b) (tetr)tr. Py c) (Trig bi)ss

d) (oh)oh e) (tetr)tetr f) (lin)lin

22 a) (Tetra) Trig. Pyramid b) (Trig planar), Trig pl

c) (Tr. Bipy) T d) (Tetra) Tetra

e) (Trig Bipy) lin f) (Tetra) Bent

  • 24 a) i) Octa (sq.planar) ii) Tetrahedral

iii) Trig Bipyr.(see-saw)

b) i) Two ii) O iii) One

c) S or Se

d) Xe

slide62

26. a) 104.5o, 120o b) 109.5o, 120o

c) 107o, 104.5o d) 180o, 109.5o

28. 2 LP (NH2-, ~109o), 1 LP (NH3, 107o), 0 LP (NH4+, 109o)

30. a) ClO2- (~109.5o, 2LP) NO2- (120o, 1 LP)

b) XeF2 (4 LP around the center)

32. a) Lone Pair on P b) Lone Pair on center O

  • 36. Polar = (b), (c), (e)
  • Ortho and meta
  • 44. Not enough p suborbitals

46. SF2 = sp3, SF4 = sp3d

slide63

48. a) sp3 b) sp c) sp2 d) sp3d

e) sp3d2

52. b) N2H4 (sp3), N2 (sp) c) N2 stronger bond

  • 54. a) sp3 (C-H), sp2 (C-O) b) 36 ve c) 26 ve-

d) 2 ve- in double e) 8 ve- in lone pairs

  • 56. a) 1, 120o 2, 120o 3, 105o

b) sp2, sp2, sp3

c) 21  bonds

slide64

62.

100. In2S (I) [Kr]5s24d10

InS (II) [Kr]5s14d10

In2S3 (III) [Kr]4d10

In(III) is smallest (least mutual electron repul)

In(III) has the highest lattice energy

  • a) C2H3Cl3O2 b) C2H3Cl3O2
  • c) Structure CCl3CH(OH)2