650 likes | 675 Views
Explore the intricate relationships between species - competition, predation, mutualism, and more - in diverse ecosystems. Witness the delicate balance that affects resource use and population dynamics. Dive deep into the fascinating world of species interactions and understand how populations are regulated by natural processes.
E N D
Chapter 5 Biodiversity, Species Interactions, and Population Control
Core Case Study: Southern Sea Otters: Are They Back from the Brink of Extinction? • Habitat • Hunted: early 1900s • Partial recovery • Why care about sea otters? • Ethics • Tourism dollars • Keystone species
Southern Sea Otter Fig. 5-1a, p. 104
5-1 How Do Species Interact? • Concept 5-1 Five types of species interactions—competition, predation, parasitism, mutualism, and commensalism—affect the resource use and population sizes of the species in an ecosystem.
Species Interact in Five Major Ways • Interspecific Competition • Predation • Parasitism • Mutualism • Commensalism
Most Species Compete with One Another for Certain Resources • For limited resources • Ecological niche for exploiting resources • Some niches overlap
Some Species Evolve Ways to Share Resources • Resource partitioning • Using only parts of resource • Using at different times • Using in different ways
Resource Partitioning Among Warblers Fig. 5-2, p. 106
Blackburnian Warbler Black-throated Green Warbler Cape May Warbler Bay-breasted Warbler Yellow-rumped Warbler Stepped Art Fig. 5-2, p. 106
Specialist Species of Honeycreepers Fig. 5-3, p. 107
Most Consumer Species Feed on Live Organisms of Other Species (1) • Predators may capture prey by • Walking • Swimming • Flying • Pursuit and ambush • Camouflage • Chemical warfare
Predator-Prey Relationships Fig. 5-4, p. 107
Most Consumer Species Feed on Live Organisms of Other Species (2) • Prey may avoid capture by • Run, swim, fly • Protection: shells, bark, thorns • Camouflage • Chemical warfare • Warning coloration • Mimicry • Deceptive looks • Deceptive behavior
Some Ways Prey Species Avoid Their Predators Fig. 5-5, p. 109
(a) Span worm (b) Wandering leaf insect (c) Bombardier beetle (d) Foul-tasting monarch butterfly (f) Viceroy butterfly mimics monarch butterfly (e) Poison dart frog (g) Hind wings of Io moth resemble eyes of a much larger animal. (h) When touched, snake caterpillar changes shape to look like head of snake. Stepped Art Fig. 5-5, p. 109
Science Focus: Threats to Kelp Forests • Kelp forests: biologically diverse marine habitat • Major threats to kelp forests • Sea urchins • Pollution from water run-off • Global warming
Purple Sea Urchin Fig. 5-A, p. 108
Predator and Prey Interactions Can Drive Each Other’s Evolution • Intense natural selection pressures between predator and prey populations • Coevolution • Interact over a long period of time • Bats and moths: echolocation of bats and sensitive hearing of moths
Coevolution: A Langohrfledermaus Bat Hunting a Moth Fig. 5-6, p. 110
Some Species Feed off Other Species by Living on or in Them • Parasitism • Parasite is usually much smaller than the host • Parasite rarely kills the host • Parasite-host interaction may lead to coevolution
Parasitism: Trout with Blood-Sucking Sea Lamprey Fig. 5-7, p. 110
In Some Interactions, Both Species Benefit • Mutualism • Nutrition and protection relationship • Gut inhabitant mutualism • Not cooperation: it’s mutual exploitation
Mutualism: Hummingbird and Flower Fig. 5-8, p. 110
Mutualism: Oxpeckers Clean Rhinoceros; Anemones Protect and Feed Clownfish Fig. 5-9, p. 111
(a) Oxpeckers and black rhinoceros Fig. 5-9a, p. 111
(b) Clownfish and sea anemone Fig. 5-9b, p. 111
In Some Interactions, One Species Benefits and the Other Is Not Harmed • Commensalism • Epiphytes • Birds nesting in trees
Commensalism: Bromiliad Roots on Tree Trunk Without Harming Tree Fig. 5-10, p. 111
5-2 What Limits the Growth of Populations? • Concept 5-2 No population can continue to grow indefinitely because of limitations on resources and because of competition among species for those resources.
Most Populations Live Together in Clumps or Patches (1) • Population: group of interbreeding individuals of the same species • Population distribution • Clumping • Uniform dispersion • Random dispersion
Most Populations Live Together in Clumps or Patches (2) • Why clumping? • Species tend to cluster where resources are available • Groups have a better chance of finding clumped resources • Protects some animals from predators • Packs allow some to get prey
Population of Snow Geese Fig. 5-11, p. 112
Generalized Dispersion Patterns Fig. 5-12, p. 112
Populations Can Grow, Shrink, or Remain Stable (1) • Population size governed by • Births • Deaths • Immigration • Emigration • Population change = (births + immigration) – (deaths + emigration)
Populations Can Grow, Shrink, or Remain Stable (2) • Age structure • Pre-reproductive age • Reproductive age • Post-reproductive age
Some Factors Can Limit Population Size • Range of tolerance • Variations in physical and chemical environment • Limiting factor principle • Too much or too little of any physical or chemical factor can limit or prevent growth of a population, even if all other factors are at or near the optimal range of tolerance • Precipitation • Nutrients • Sunlight, etc
Trout Tolerance of Temperature Fig. 5-13, p. 113
No Population Can Grow Indefinitely: J-Curves and S-Curves (1) • Size of populations controlled by limiting factors: • Light • Water • Space • Nutrients • Exposure to too many competitors, predators or infectious diseases
No Population Can Grow Indefinitely: J-Curves and S-Curves (2) • Environmental resistance • All factors that act to limit the growth of a population • Carrying capacity (K) • Maximum population a given habitat can sustain
No Population Can Grow Indefinitely: J-Curves and S-Curves (3) • Exponential growth • Starts slowly, then accelerates to carrying capacity when meets environmental resistance • Logistic growth • Decreased population growth rate as population size reaches carrying capacity
Logistic Growth of Sheep in Tasmania Fig. 5-15, p. 115
Science Focus: Why Do California’s Sea Otters Face an Uncertain Future? • Low biotic potential • Prey for orcas • Cat parasites • Thorny-headed worms • Toxic algae blooms • PCBs and other toxins • Oil spills
Population Size of Southern Sea Otters Off the Coast of So. California (U.S.) Fig. 5-B, p. 114
Case Study: Exploding White-Tailed Deer Population in the U.S. • 1900: deer habitat destruction and uncontrolled hunting • 1920s–1930s: laws to protect the deer • Current population explosion for deer • Spread Lyme disease • Deer-vehicle accidents • Eating garden plants and shrubs • Ways to control the deer population
Mature Male White-Tailed Deer Fig. 5-16, p. 115
When a Population Exceeds Its Habitat’s Carrying Capacity, Its Population Can Crash • A population exceeds the area’s carrying capacity • Reproductive time lag may lead to overshoot • Population crash • Damage may reduce area’s carrying capacity
Exponential Growth, Overshoot, and Population Crash of a Reindeer Fig. 5-17, p. 116
Species Have Different Reproductive Patterns (1) • Some species • Many, usually small, offspring • Little or no parental care • Massive deaths of offspring • Insects, bacteria, algae
Species Have Different Reproductive Patterns (2) • Other species • Reproduce later in life • Small number of offspring with long life spans • Young offspring grow inside mother • Long time to maturity • Protected by parents, and potentially groups • Humans • Elephants
Under Some Circumstances Population Density Affects Population Size • Density-dependent population controls • Predation • Parasitism • Infectious disease • Competition for resources