560 likes | 665 Views
Explore varied solutions to address vacuum window tightness issues, including material recommendations and stress analysis results. An overview of options for design optimization based on pressure and thermal loads.
E N D
HiRadMat WindowDesign report v2.0 Michael MONTEIL- 16 March 2010
Specifications v2.0 • Interface between machine vacuum and Atmospheric pressure 10-8 mbar / Patm • Protective atmosphere !!! • Diameter 60 mm (Updated) • Thickness 5 mm (Updated) • Resist to a proton beam size on the window : 1s = 0.5 mm “Beam Size at the TT66 Vacuum Window”, C. Hessler, 26.02.2010 Michael MONTEIL- 16 March 2010
Window geometry – C-C option • Carbon/Carbon composite: 1501 G from SGL • Cylindrical window • Diameter f 80 mm (Updated) • Aperture f 60 mm(Updated) • Thickness: 0.5 cm (Updated) • Aperture (flange internal diameter): f 60 mm(Updated) Michael MONTEIL- 16 March 2010
Solutions #1 for C-C tightness problem:Differential vacuum (V1.0) • 1 Window C-C • Pumping speed needed: 8.4x109 l/s … • 2 Windows C-C with differential pumping • Pumping speed needed: 8.4x103 l/s … • 3 Windows C-C with differential pumping • Pumping speed needed: 8.4x101 l/s OK Michael MONTEIL- 16 March 2010
Solutions #1 for C-C tightness problem:Differential vacuum (New values V2.0) • 1 Window C-C • Pumping speed needed: 2.3x108 l/s … • 2 Windows C-C with differential pumping • Pumping speed needed: 8.94x102 l/s OK ! • 3 Windows C-C with differential pumping • Pumping speed needed: 13 l/s Too low ?! Michael MONTEIL- 16 March 2010
Solutions #1 • What about radiations in this area ? • Possible maintenance needed on the roots pump… • Protective atmosphere • Decreasing pressure in Vacuumside with serial pumps Michael MONTEIL- 16 March 2010
Reference • P2 : Roots pump • 100 –> 1500 m3/h • 10-3 -> 10 Bar • P3 : Ion pump • 400 l/s Michael MONTEIL- 16 March 2010
Solutions #2 for C-C tightness problem: Add a Graphite foil (v1.0) Solution #3 : Tight steel“ring” with a C-C plate (v1.0) Michael MONTEIL- 16 March 2010
Solution #4 : Beryllium • Metal -> Tight !! No differential pumping • Simple window assembly • Thin thickness • Toxicity • Price Michael MONTEIL- 16 March 2010
Solution #5 : Be + C-C • Solution #4 but the pressure load is supported by a C-C plate • Simple window assembly • Thin thickness (no differential pumping…) • Be cannot pollute vacuum unless C-C fail • Tight • Price… but compare to intermediate Vac. Pumps price ? Michael MONTEIL- 16 March 2010
Solutions - Sum-up • #1: C-C (Differential pumping) • Protective atm (Nitrogen ?) • Radiations? • #2: C-C + Graphite foil (useless now) • #3: Tight steel “ring” with a C-C plate • #4: Beryllium • Safety problem • #5: C-C + Beryllium Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #1stresses and deflection - C-C under DP = 1.4atm • Linear circular fixed support • 2 planes of symmetry • Geometry • Diameter f 80 mm • Thickness: 5 mm • Aperture: f 60 mm • Pressure 1.4 bar Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #1stresses and deflection - C-C under DP = 1.4atm • Orthotropic properties : 18 plies [0°/90°…] • Smooth and continuous temperature distribution • Through-thickness energy deposition • Coefficient of Thermal Expansion varying with temperature and directions Michael MONTEIL- 16 March 2010
C-C - Pressure load - Deflection 7.4 μm Michael MONTEIL- 16 March 2010
C-C - Pressure load – Von-Mises 5.9 Mpa Michael MONTEIL- 16 March 2010
C-C - Pressure load – Tsaï-Wu Michael MONTEIL- 16 March 2010
C-C - Thermal load ANSYS input =FLUKA output • C-C | 1s = 0.5 mm | 1.7e11 p+ | 288 bunches • Axisymmetrical radial temperature field Radial T (°C) T (°C) R (cm) Z (cm) Depth Michael MONTEIL- 16 March 2010
C-C - Pressure + Thermal load – Deflection 10.6 μm Michael MONTEIL- 16 March 2010
C-C - Pressure + Thermal load – Von-Mises 31 Mpa Michael MONTEIL- 16 March 2010
C-C - Pressure + Thermal load – Tsaï-Wu Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #4stresses and deflection - Be under DP = 1.4atm • Linear circular fixed support • 2 planes of symmetry • Geometry • Diameter f 80 mm • Thickness: 0.254 mm • Aperture: f 60 mm • Pressure 1.4 bar Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #4stresses and deflection - Be under DP = 1.4atm • Smooth and continuous temperature distribution • Through-thickness energy deposition • Coefficient of Thermal Expansion varying with temperature • Be: • Poisson’s ratio = 0.1 • High Re = 275 Mpa • High Rm = 551 MPa Michael MONTEIL- 16 March 2010
Be - Pressure load - Deflection 8.1 mm Michael MONTEIL- 16 March 2010
Be - Pressure load – Von-Mises 319 Mpa Michael MONTEIL- 16 March 2010
Be - Pressure load – Safety factor Ult. Strength 1.7 Michael MONTEIL- 16 March 2010
Be - Thermal load ANSYS input =FLUKA output • Be | 1s = 0. 5 mm | 1.7e11 p+ | 288 bunches • Axisymmetrical radial temperature field T (°C) T (°C) Z (cm) Z (cm) Radial Be Michael MONTEIL- 16 March 2010
Be - Pressure + Thermal load – Deflection 8 mm Michael MONTEIL- 16 March 2010
Be - Pressure + Thermal load – Von-Mises 315 Mpa Michael MONTEIL- 16 March 2010
Be - Pressure + Thermal load – Safety factor Ult. Strength 1.7 Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #5stresses and deflection - C-C+Be under DP = 1.4atm • 2 Studies • C-C (See Solution #4) • Pressure load • Pressure + Temperature loads • Be (Following slides) • Flattered on a C-C plate (Fixed support) and apply pressure load on the other side • Flattered on a C-C plate (Fixed support) and apply pressure load on the other side + Temperature load • 2 planes of symmetry • Geometry • Diameter f 80 mm • Thickness • C-C: 5 mm • Be: 0.254 mm • Aperture: f 60 mm • Pressure 1.4 bar Michael MONTEIL- 16 March 2010
ANSYS Study - Solutions #5stresses and deflection - C-C+Be under DP = 1.4atm • Smooth and continuous temperature distribution • Through-thickness energy deposition • Coefficient of Thermal Expansion varying with temperature Michael MONTEIL- 16 March 2010
Be (flatter on C-C) - Pressure load – Deformation Michael MONTEIL- 16 March 2010
Be (flatter on C-C) - Pressure load – Von-Mises Michael MONTEIL- 16 March 2010
Thermal load ANSYS input =FLUKA output • C-C + Be | 1s = 0.5 mm | 1.7e11 p+ | 288 bunches • Axisymmetrical radial temperature field Radial C-C T (°C) T (°C) Z (cm) Z (cm) Radial Be Depth C-C Michael MONTEIL- 16 March 2010
Be (flatter on C-C) - Pressure + Thermal load – Deflection x 2.6e+002 Michael MONTEIL- 16 March 2010
Be (flatter on C-C) - Pressure + Thermal load – Von-Mises Michael MONTEIL- 16 March 2010
Be (flatter on C-C) - Pressure + Thermal load – Safety factor Ult. Strength Michael MONTEIL- 16 March 2010
To do : • Rough mechanical design • Solution #1 C-C with differential pumping • Maybe coating • 15 cm length between upstream and downstream sides • Solution #5 C-C + Be • Order quotes of Be • Same design that window in TI8, TI2, TT41 (Design by Kurt Weiss, Luca Bruno and Jose Miguel Jimenez) but replacing the Ti foil by a Be foil • Nickel-coating to prevent oxidation on Be ? • 15 cm length between upstream and downstream sides Michael MONTEIL- 16 March 2010
Back up slides Michael MONTEIL- 16 March 2010
C-C 1.4 bar diameter 146 mm (v1.0) Michael MONTEIL- 16 March 2010
Pressure load - Deflection Michael MONTEIL- 16 March 2010
Pressure load – Von-Mises Michael MONTEIL- 16 March 2010
Pressure load – Tsaï-Wu Michael MONTEIL- 16 March 2010
Thermal load ANSYS input =FLUKA output • C-C | 1s = 0.25 mm | 1.7e11 p+ • Axisymmetrical radial temperature field Radial T (°C) T (°C) R (cm) Z (cm) Depth Michael MONTEIL- 16 March 2010
Pressure + Thermal load – Deflection Michael MONTEIL- 16 March 2010
Pressure + Thermal load – Von-Mises Michael MONTEIL- 16 March 2010
Pressure + Thermal load – Tsaï-Wu Michael MONTEIL- 16 March 2010
Be Only Pressure 1 bar instead of 1.4 bar Michael MONTEIL- 16 March 2010
Pressure load - Deflection Michael MONTEIL- 16 March 2010