320 likes | 538 Views
冶金原理. 氧化物用气体还原剂还原. 上一章. 任务:氧化物用气体还原剂还原. 问题: 一、气体还原剂的性质 二、氧化物用气体还原剂还原的条件. 目录. 第一节 概述 第二节 燃烧反应 第三节 氧化物用气体还原剂 (CO 、 H 2 ) 还原 第四节 氧化物用固体还原剂 (C) 还原 第五节 复杂化合物的还原 第六节 金属热还原 第七节 氧化物还原实例 第八节 氧化物还原动力学. 第一节 概 述.
E N D
冶金原理 氧化物用气体还原剂还原 上一章
任务:氧化物用气体还原剂还原 • 问题: • 一、气体还原剂的性质 • 二、氧化物用气体还原剂还原的条件
目录 • 第一节 概述 • 第二节 燃烧反应 • 第三节 氧化物用气体还原剂(CO、H2)还原 • 第四节 氧化物用固体还原剂(C)还原 • 第五节 复杂化合物的还原 • 第六节 金属热还原 • 第七节 氧化物还原实例 • 第八节 氧化物还原动力学
第一节 概 述 金属氧化物在高温下还原为金属是火法冶金过程中最重要的一环,它被广泛地应用于黑色、有色及稀有金属冶金中。火法冶金的还原过程按原料和产品的特点可分为以下几种情况: 氧化矿或精矿直接还原为金属,如锡精矿、铁矿石的还原熔炼; 硫化精矿经氧化焙烧后再还原,如铅烧结矿、锌焙烧矿的还原;. 湿法冶金制取的纯氧化物还原为金属,如三氧化钨粉的氢还原、四氯化钛的镁热还原;
含两种氧化物的氧化矿选择性还原其中一种氧化物,另一种氧化物富集在半成品中,如钛铁矿还原铁后得出含高二氧化钛的高钛渣等。含两种氧化物的氧化矿选择性还原其中一种氧化物,另一种氧化物富集在半成品中,如钛铁矿还原铁后得出含高二氧化钛的高钛渣等。 • 按所用还原剂的种类划分,还原过程可分为气体还愿剂还原,固体碳还原,金属热还原等,以下将按还原剂种类来讨论氧化物的还原原理。 • 由于火法冶金过程需要用燃料燃烧来得到高温,而燃料与还原剂又是相互联系的,因此将首先介绍燃烧反应的热力学。
第二节燃烧反应 • 火法冶金所用的燃料中,固体燃料有煤和焦炭,其可燃成分主要为碳(c);气体燃料有煤气和天然气,液体燃料有重油等,其可燃成分,主要为CO和H:。冶金用还原剂有时是燃料本身,如煤和焦碳,有时是燃料燃烧产物,如CO和H:。参与燃烧的助燃剂为氧气(oz);主要来自于空气,有时是氧化物中所含的氧气(o:)。而燃烧和还原的气体产物则为 C02和水蒸气。因而,燃烧反应是与C-O系和C-H—o系有关的反应。
反应(3)和(4)由于碳在高温下与氧反应可同时生成CO和CO2,因而不能单独进行研究,通常其热力学数据系由反应(1)和(2)间接求出,即反应(1)加反应(2)得出反应(3),而反应(1)的两倍加上反应(2)得到反应(4)。反应(3)和(4)由于碳在高温下与氧反应可同时生成CO和CO2,因而不能单独进行研究,通常其热力学数据系由反应(1)和(2)间接求出,即反应(1)加反应(2)得出反应(3),而反应(1)的两倍加上反应(2)得到反应(4)。 • 反应(2)、(3)和(4)皆为离解生成反应,其热力学规律已在第二章中讨论过。备反应的标准吉布斯自由能-T曲线见图l一3。 • 由图3一l可见,碳的完全燃烧和不完全燃烧反应的△沪值在任何温度下都是负值,且温度升高使不完全燃烧反应的x6,o值变得更负,因而这两个反应在高温下能完全反应。在氧气(oz)充足时,c完全燃烧成coz,o:不足时将生成一部分coo煤气燃烧反应的AG~值随温度升高而 • 加大,因而温度高时,CO不易反应完全。对碳的气化反应,温度较低时为正值,温度高时为负值,这一特征决定了气化反应的平衡对气相成分有明显的影响。 • 以下着重分析煤气燃烧反应和碳的气化反应。
图中曲线为平衡曲线,表明了给定温度下的平衡成分。若实际气体成分高于曲线的平衡值,即实际的%CO大于平衡的%CO,则反应向CO减少的方向进行,此时只有CO2是稳定区,相反,曲线以下区域是CO的稳定区。
如果不用等温方程式直接求出给定条件下的ΔGθ值,而是先求出标准状态下的平衡气相组成中的CO浓度,然后与实际条件相比较,也同样可以得出上述结论。例3-3中已求出1500K时CoO用CO还原的平衡气相组成为%CO/%CO2=0.1233,即CO为10.98%(进行还原反应的最低浓度)。已给实际条件为1500K,CO为20%,因(实际)=20265Pa(0.2atm)>=11125.5Pa(0.1098atm),反应向降低CO浓度的方向,即向生成Co的方向进行,若控制这样的条件,可以用CO还原CoO成Co,还原反应进行过程中CO浓度不断减少,直至达到平衡浓度(10.98%),反应处于该温度条件下的平衡状态。为使CoO的还原反应能够继续进行,必须保持气相中CO浓度大于CO平衡浓度,及气体产物CO2浓度低于CO2平衡浓度。如果不用等温方程式直接求出给定条件下的ΔGθ值,而是先求出标准状态下的平衡气相组成中的CO浓度,然后与实际条件相比较,也同样可以得出上述结论。例3-3中已求出1500K时CoO用CO还原的平衡气相组成为%CO/%CO2=0.1233,即CO为10.98%(进行还原反应的最低浓度)。已给实际条件为1500K,CO为20%,因(实际)=20265Pa(0.2atm)>=11125.5Pa(0.1098atm),反应向降低CO浓度的方向,即向生成Co的方向进行,若控制这样的条件,可以用CO还原CoO成Co,还原反应进行过程中CO浓度不断减少,直至达到平衡浓度(10.98%),反应处于该温度条件下的平衡状态。为使CoO的还原反应能够继续进行,必须保持气相中CO浓度大于CO平衡浓度,及气体产物CO2浓度低于CO2平衡浓度。
用例3-3的计算方法,可以求出各种氧化物在1473K温度下用CO还原的平衡气相成分,并以气相成分对各种氧化物的标准生成吉布斯自由能作图(图3-7)。用例3-3的计算方法,可以求出各种氧化物在1473K温度下用CO还原的平衡气相成分,并以气相成分对各种氧化物的标准生成吉布斯自由能作图(图3-7)。 • 由图3-7可看出,氧化物生成吉不斯自由能值愈小,用CO还原时,气相中CO/CO2比值就愈大。图中氧化物大体分为三类:Cr2O3、MnO、V2O5、SiO2、TiO2等氧化物、CO/CO2约为103~106,即几乎为纯CO才能使之还原,故为难还原氧化物。而CoO、NiO、PbO、Cu2O等则相反,为易还原氧化物。P2O5、SnO2、ZnO、FeO则介于两者之间,大约50%CO浓度即可还原。