hemilabile coordination complexes as fluorescent chemosensors the groundwork rupome n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Hemilabile Coordination Complexes as Fluorescent Chemosensors The Groundwork: RuPOMe PowerPoint Presentation
Download Presentation
Hemilabile Coordination Complexes as Fluorescent Chemosensors The Groundwork: RuPOMe

Loading in 2 Seconds...

play fullscreen
1 / 22

Hemilabile Coordination Complexes as Fluorescent Chemosensors The Groundwork: RuPOMe - PowerPoint PPT Presentation


  • 157 Views
  • Uploaded on

Hemilabile Coordination Complexes as Fluorescent Chemosensors The Groundwork: RuPOMe. Anthony Tomcykoski. Overview. Introduction Synthetic Approach Characterization Conclusions Future Work. Introduction. Hemilabile Coordination Polydentate chelates Inert and labile binding positions

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Hemilabile Coordination Complexes as Fluorescent Chemosensors The Groundwork: RuPOMe' - rasia


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
hemilabile coordination complexes as fluorescent chemosensors the groundwork rupome

Hemilabile Coordination Complexes as Fluorescent ChemosensorsThe Groundwork: RuPOMe

Anthony Tomcykoski

overview
Overview

Introduction

Synthetic Approach

Characterization

Conclusions

Future Work

introduction
Introduction
  • Hemilabile Coordination
    • Polydentate chelates
      • Inert and labile binding positions
    • Phosphine-ether ligands

Hemilabile coordination complex in the presence of a small polar molecule

(1)

introduction1
Introduction
  • Examples of Hemilabile Ligands

Tris(2,6-methoxyphenyl)phosphine

P(OMe)6

Bis(2-methoxyphenyl)phenylphosphine

P(OMe)2

POMe

Diphenyl(2-methoxyphenyl)phosphine

introduction2
Introduction
  • Photosensitizer
    • [Ru(bpy)3]+2
    • Long lived 3MLCT
  • Fluorescent Chemosensor
    • Molecular sensing
    • Monitor photophysical properties
synthetic approach
Synthetic Approach

Step One:

Make a suitable starting material

.2 H2O

Starting Material

Ru(bpy)2Cl2.2H2O

synthetic approach1
Synthetic Approach

Step Two:

Remove inner sphere chloride

Introduce non- coordinating anion (BF4-)

2

Solvated bis(bipyridyl) complex

synthetic approach2
Synthetic Approach

Step Three:

Coordinate phosphine-ether hemilabile ligand

Isolate product

RuPOMe

hemilabile coordination complexes
Hemilabile Coordination Complexes

Tolylterpyridylchromophores

Tridentate Ligands

RuPOMe

RuP(OMe)6

Bipyridyl Chromophores

Bidentate Ligands

RuP(OMe)2

Ru(bpy)2P(OMe)6

characterization
Characterization

UV/Vis Spectroscopy

Infrared Spectroscopy

Emission Spectra

Excited State Lifetime

NMR (1H, 13C, 31P)

uv vis spectroscopy bipyridyl systems
UV/Vis SpectroscopyBipyridyl Systems

MLCT energy gap varies in each complex

[Ru(bpy)3](PF6)2 450nm

RuCl3.nH2O 420nm

Ru(bpy)2Cl2 376, 548nm

[RuPOMe](PF6)2 450nm

[Ru(bpy)2P(OMe)6](PF6)2 430nm

in EtOH/Acet 476nm

[Ru(bpy)3](PF6)2

RuCl3.nH2O

Ru(bpy)2Cl2.2H2O

jablonski diagram mlct ru bpy 3 2
Jablonski Diagram MLCT[Ru(bpy)3]+2

Short, sub-picosecond ISC

1MLCT

Long, ~5μs

S1

3MLCT

T1

E

Radiative Decay

Nonradiative Decay

  • Interested in Monitoring
    • 3MLCT Lifetime
    • Radiative Decay or Emission

S0

uv vis spectroscopy tolylterpyridyl systems
UV/Vis SpectroscopyTolylterpyridyl Systems

MLCT Bands

Ru(ttpy)Cl3

440nm

[Ru(ttpy)2]Cl2

486nm

[RuP(OMe)6](BF4)2

460nm

emission spectra room temperature
Emission SpectraRoom Temperature

[RuPOMe](PF6)2

emission

601nm

excitation

463nm

[Ru(bpy)2P(OMe)6](PF6)2

emission

505nm

excitation

430nm

RuP(OMe)6](BF4)2

emission

413nm

excitation

343nm

excited state lifetime
Excited State Lifetime

[Ru(bpy)3]+2

 = 5µs (77K, literature)

 = 132.4ns (Room Temperature, CH3CN, experimental)

emission

610nm

RuPOMe

 = 319ns

emission

601nm

  • Conclusion:
    • Room temperature lifetimes are inconsistent
    • The lifetime of tolylterpyridine ruthenium complexes are on the order of picoseconds
nmr studies
NMR Studies
  • 1H NMR
    • Methoxy proton shifts
    • Observe bound and unbound ligand signal
  • 13C NMR
    • Signal:Noise low, numerous peaks
  • 31P NMR
    • High number of scans (6400 scans)
    • Unique 31P resonances with analyte complexation
    • Long T1 Relaxation (PPh3=13.369s, POMe=18.396s)
1 h nmr
1H NMR

2,2’-bipyridine

free ligand

Aromatics > 7ppm

POMe

free ligand

-OCH3 3.70ppm

[RuPOMe](PF6)2

-OCH3 2.05ppm

31 p nmr
31P NMR

[RuPOMe](PF6)2

[2.85 x 10-3M] in Acetone-d6

56ppm Ether Bound

-143ppm(septet) PF6-

POMe free ligand

-14.45ppm

[RuP(OMe)6](BF4)2

[3.0 x 10-3M] in Acetone-d6

15.5ppm Ether bound

-63.5ppm(d) undesired product

-68.5ppm(d) undesired product

P(OMe)6 free ligand

-70.8ppm

conclusions
Conclusions
  • [RuPOMe](PF6)2 successfully synthesized and characterized
  • [RuP(OMe)2] and [RuP(OMe)6] require different synthetic approach
  • Tolylterpyridine is not ideal as a chromophoric ligand
  • MLCT electronic state observed for bipyridyl and tolylterpyridylchromophores
  • Complexes are luminescent, but minimal at room temperature
future work
Future Work
  • Concentration Dependence
  • Analyte selectivity titrations
  • Low Temperature (77K) Photophysics
  • 31P NMR in Determining Equilibrium
  • Quantum Yield Measurements
  • Use Fluorescent Polymer Units as Hemilabile Ligands
acknowledgements
Acknowledgements
  • Jones’ Group
    • Dr. Jones, Dr. Martin, Dr. Flynn
    • Jasper, Wenrong, Catherine, Sherryllene, Dickson, Peter
    • Undergraduates
  • Dr. Jürgen Schulte
  • Chemistry Department
  • Binghamton University
references
References
  • Rogers, C.W.; Zhang, Y.; Patrick, B.O.; Jones, W.E.; Wolf, M.O. Inorg. Chem. 2002, 41, 1162-1169
  • Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes; Academic Press: London, 1992.
  • Angell, S.E.; Zhang, Y.; Rogers, C.W.; Wolf, M.O.; Jones, W.E.; Inorg. Chem. 2005, 44, 7377-7384
  • Alary, F.; Heully, J.L.; Bijeire, L.; Vicendo, P. Inorg. Chem. 2007, 46, 3154-3165.
  • Wang, J.; Fang, Y.Q.; Hanan, G.S.; Loiseau, F.; Campagna, S. Inorg Chem. 2005, 44, 5-7.
  • Rogers, C.W.; Wolf, M.O. Chem. Comm. 1999, 2297-2298.
  • Angell, S.E., Rogers, C.W.; Zhang, Y.; Wolf, M.O.; Jones, W.E.; Coordination Chemistry Reviews. 2006, 250, 1829-1841.
  • Demas, J.N.; Adamson, A.W. J. Am. Chem. Soc.1971, 93, 1800-1801