1 / 19

Physical Property Analysis

Physical Property Analysis. Physical Properties. A physical property is a property that can be observed or measured without changing the identity of the matter. Examples of Physical Properties: Volume Density Color Surface Area Centroid Moment of Inertia Mass Odor Temperature

ramya
Download Presentation

Physical Property Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Physical Property Analysis

  2. Physical Properties A physical property is a property that can be observed or measured without changing the identity of the matter. Examples of Physical Properties: Volume Density Color Surface Area Centroid Moment of Inertia Mass Odor Temperature Melting PointViscosity Electric Charge

  3. Physical Property Analysis The size, volume, surface area, and other properties associated with a solid model are often part of the design constraints or solution criteria. The following are physical properties presented in typical solid modeling programs: Volume Density Mass Surface AreaCenter of Gravity Moment of Inertia Product of Inertia Radii of Gyration Principal Axes Principal Moments Length

  4. Physical Properties In this lesson you will investigate the following physical properties: • Volume • Surface Area • Density • Mass

  5. Rectangular Prism 4 8 4 Volume • Volume is the amount of three-dimensional space occupied by an object or enclosed within a container • Design engineers use volume to determine the amount of material needed to produce a part • Different formulas for different shapes V = H x W x L V = 4” x 4” x 8” V = 128 in.3

  6. It is imperative to keep your units the same when measuring and calculating volume. Cubic inches (in.3) Cubic feet (ft3) Cubic yards (yds3) Cubic centimeters (cm3) Cubic meters (m3) Volume in Cubic Units Measure volume using cubic units:

  7. Volume Formulas for Prisms, Cylinders, Pyramids, or Cones If B is the area of the base of a prism, cylinder, pyramid, or cone and H is the height of the solid, then the formula for the volume is V = BH Note: You will need to calculate the area of the shape for the base of the prism. For example: If the solid is a triangular prism, then you will need to calculate the area of the triangle for the base and then calculate the volume.

  8. Area Formulas for Bases of Prisms, Cylinders, and Pyramids Rectangular Prism – base is rectangle, therefore A = length * width or A = lw Cylinder – base is a circle, therefore A = pi * radius of circle squared or A = πr2 Square Pyramid – base is a square, therefore A = length * width or A = lw or side squared since the sides are the same on a square or A = s2

  9. Volume of a ConeA Special Case • A cone is 1/3 of a cylinder • The base of a cylinder is a circle • The area of a circle is A=πr2 • Therefore, the formula for the volume of a cone is V= 1/3Ah whereA=πr2andh is the height of the cone

  10. Density • Density is defined as mass per unit volume. • Density is different for every material and can be found in a machinist handbook.

  11. Polypropylene has a density of .035 lb/in.3 and Mass • Mass is the amount of matter in an object or the quantity of the inertia of the object. • Many materials are purchased by weight; to find weight, you need to know the mass. Mass = Volume x Density Mass = 128 in.3 x .035 lb/in.3 Mass = 4.48 lb Using the volume from the previous example:V = 128 in.3

  12. B C A D F E Surface Area • Surface area is the squared dimensions of the exterior surface. • Surface area is important when determining coatings and heat transfer of a part. A= 4in. x 4in. = 16 in.2 B= 4in. x 8in. = 32 in.2 C= 4in. x 8in. = 32 in.2 D= 4in. x 8in. = 32 in.2 E= 4in. x 8in. = 32 in.2 F= 4in. x 4in. = 16 in.2 A + B+ C + D+ E + F = 160 in.2

  13. To start the Mass Property function, right click the solid model name in the Browser. Pick Properties Mass Property values will be used for predicting material quantity needed for production, finishing, packaging, and shipping.

  14. Additional Physical Properties

  15. Center of Gravity • A 3D point where the total weight of the body may be considered to be concentrated. • The average location of an object. • If an object rotates when thrown it rotates about its center of gravity. • An object can be balance on a sharp point placed directly beneath its center of gravity

  16. Centroid • A 3D point defining the geometric center of a solid. • Do not confuse centroid with the center of gravity. • The two only exist at the same 3D point when the part has uniform geometry and density.

  17. Principal Axes • The lines of intersection created from three mutually perpendicular planes, with the three planes’ point of intersection at the centroid of the part. The X, Y, and Z axes show the principal axes of the ellipsoid.

  18. Sources Brodinski, K. G. (1989). Engineering materials properties and selection. Prentice Hall, Inc.: Englewood Cliffs, NJ. Budinski, K. G. (1992). Engineering materials (4th Ed.). Prentice Hall, Inc.: Englewood Cliffs, NJ. Gere, J. M., & Timoshenko, S. P. (1997). Mechanics of materials. PWS Publishing Company: Boston. Lockhart, S. D., & Johnson, C. M. (1999). Engineering design communication: Conveying design through graphics (Preliminary Ed.). Addison Wesley Longman, Inc.: Reading, MA. Madsen, D. A., Shumaker, T. M., Turpin, J. L., & Stark, C. (1994). Engineering design and drawing (2nd Ed.). Delmar Publishers Inc.: Albany.

More Related