Material Strength

1 / 8

# Material Strength - PowerPoint PPT Presentation

Material Strength. Stress vs Strain. A graph of stress versus strain is linear for small stresses. The slope of stress versus strain is a modulus that depends on the type of material. For normal stress this is Young’s modulus Y . stiff material. Stress s. elastic material. Strain e.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Material Strength' - raanan

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

### Material Strength

Stress vs Strain
• A graph of stress versus strain is linear for small stresses.
• The slope of stress versus strain is a modulus that depends on the type of material.
• For normal stress this is Young’s modulus Y.

stiff material

Stress s

elastic material

Strain e

Spring Constant
• Young’s modulus is a from a linear relation like Hooke’s law.
• Young’s modulus describes a type of material.
• The spring constant describes an object.
• Y and k are related.

F

DL

Inelastic Material
• The linear behavior of materials only lasts up to a certain strength – the yield strength.
• Materials can continue to deform but they won’t restore their shape.
• For very high strain a material will break.

breaking strength

Stress s

yield strength

Strain e

Shear Modulus
• Materials also have a modulus from shear forces.
• Shear modulus S also matches with a spring constant.
• The angle g = Dx/L is sometimes used for shear.

F

Dx

L

g

A (goes into screen)

One common fracture is a torsion fracture. A torque is applied to a bone causing a break.

The shear modulus of bone is 3.5 GPa.

The lower leg has a breaking angle of 3.

It requires 100 Nm of torque.

Torque and angle apply.

Angle is Dx/L = tang

Approximately Rf/L = g

Sheer is related to torque.

Twist a Leg

Rf

L

g

Bulk Modulus
• Pressure changes volume, not length.
• Bulk modulus B relates changes in pressure and volume.
• The negative sign represents the decrease in volume with increasing pressure.

P

DV

V

A (surface area)

Steel has a bulk modulus of B = 60 GPa. A sphere with a volume of 0.50 m3 is constructed and lowered into the ocean where P = 20 MPa.

How much does the volume change?

Use the relation for bulk modulus.

B = -(DP) / (DV/V)

DV= -VDP / B

Substitute values:

(-0.50 m3)(2.0 x 107 Pa) / (6.0 x 1010 Pa)

DV = -1.6 x 104 m3

Under Pressure