Loading in 2 Seconds...

Abstraction and Modular Reasoning for the Verification of Software

Loading in 2 Seconds...

- 115 Views
- Uploaded on

Download Presentation
## PowerPoint Slideshow about 'Abstraction and Modular Reasoning for the Verification of Software' - raanan

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

### Abstraction and Modular Reasoning for the Verification of Software

Corina Pasareanu

NASA Ames Research Center

Outline

- Bandera Project (Kansas Sate University):
- Tool Support for Program Abstraction and Abstract Counter-example Analysis (joint work with the Bandera team)
- NASA Ames Projects:
- Combining Symbolic Execution with (Explicit State) Model Checking (joint work with Willem Visser)
- Assumption Generation for Component Verification (joint work with Dimitra Giannakopoulou and Howard Barringer)

Outline

- Bandera Project (Kansas Sate University):
- Tool Support for Program Abstraction and Abstract Counter-example Analysis
- NASA Ames Projects:
- Combining Symbolic Execution with (Explicit State) Model Checking
- Assumption Generation for Component Verification

Finite-state system

Verification

tool

or

Error trace

(F W)

Line 5: …

Line 12: …

Line 15:…

Line 21:…

Line 25:…

Line 27:…

…

Line 41:…

Line 47:…

Specification

Finite-state VerificationFinite-State Verification

- Effective for analyzing properties of hardware systems

Widespread success and adoption in industry

- Recent years have seen many efforts to apply those techniques to software

Limited success due to the enormous state spaces associated with most software systems

represents a set of states

Original

system

Abstract

system

abstraction

Safety:

The set of behaviors of the abstract system over-approximates

the set of behaviors of the original system

Abstraction: the key to scaling upDevelop multiple forms of tool support for abstraction that is…

… applicable to program source code

… largely automated

… usable by non-experts

Evaluate the effectiveness of this tool support through…

… implementation in the Bandera toolset

… application to real multi-threaded Java programs

Goals of our work …(n<0) : NEG

(n==0): ZERO

(n>0) : POS

Signs

Signs x = ZERO;

if (Signs.eq(x,ZERO))

x = Signs.add(x,POS);

NEG

ZERO

POS

Data Type AbstractionCollapses data domains via abstract interpretation:

Code

Data domains

int x = 0;

if (x == 0)

x = x + 1;

Abstraction

Specification

Language

PVS

Concrete

Type

Abstract

Type

Inferred

Type

Abstraction

Definition

Variable

x

int

y

int

done

bool

count

int

BASL

Compiler

….

o

Object

b

Buffer

Program

Abstracted

Program

Abstract Code

Generator

Abstraction in BanderaSigns

Signs

Signs

bool

Abstraction

Library

int

….

Point

Buffer

Generation

Example: Start safe, then refine:+(NEG,NEG)={NEG,ZERO,POS}

Forall n1,n2: neg?(n1) and neg?(n2) implies not pos?(n1+n2)

Proof obligations submitted to PVS...

Forall n1,n2: neg?(n1) and neg?(n2) implies not zero?(n1+n2)

Forall n1,n2: neg?(n1) and neg?(n2) implies not neg?(n1+n2)

Definition of Abstractions in BASLoperator + add

begin

(NEG , NEG) -> {NEG} ;

(NEG , ZERO) -> {NEG} ;

(ZERO, NEG) -> {NEG} ;

(ZERO, ZERO) -> {ZERO} ;

(ZERO, POS) -> {POS} ;

(POS , ZERO) -> {POS} ;

(POS , POS) -> {POS} ;

(_,_) -> {NEG,ZERO,POS};

/* case (POS,NEG),(NEG,POS) */

end

abstraction Signs abstracts int

begin

TOKENS = { NEG, ZERO, POS };

abstract(n)

begin

n < 0 -> {NEG};

n == 0 -> {ZERO};

n > 0 -> {POS};

end

Compiling BASL Definitions

abstraction Signs abstracts int

begin

TOKENS = { NEG, ZERO, POS };

abstract(n)

begin

n < 0 -> {NEG};

n == 0 -> {ZERO};

n > 0 -> {POS};

end

operator + add

begin

(NEG , NEG) -> {NEG} ;

(NEG , ZERO) -> {NEG} ;

(ZERO, NEG) -> {NEG} ;

(ZERO, ZERO) -> {ZERO} ;

(ZERO, POS) -> {POS} ;

(POS , ZERO) -> {POS} ;

(POS , POS) -> {POS} ;

(_,_)-> {NEG, ZERO, POS};

/* case (POS,NEG), (NEG,POS) */

end

public class Signs {

public static final int NEG = 0; // mask 1

public static final int ZERO = 1; // mask 2

public static final int POS = 2; // mask 4

public static int abs(int n) {

if (n < 0) return NEG;

if (n == 0) return ZERO;

if (n > 0) return POS;

}

public static int add(int arg1, int arg2) {

if (arg1==NEG && arg2==NEG) return NEG;

if (arg1==NEG && arg2==ZERO) return NEG;

if (arg1==ZERO && arg2==NEG) return NEG;

if (arg1==ZERO && arg2==ZERO) return ZERO;

if (arg1==ZERO && arg2==POS) return POS;

if (arg1==POS && arg2==ZERO) return POS;

if (arg1==POS && arg2==POS) return POS;

return Bandera.choose(7);

/* case (POS,NEG), (NEG,POS) */

}

Abstract Counter-example Analysis

- For an abstracted program, a counter-example may be infeasible because:
- Over-approximation introduced by abstraction

- Example:

x = -2; if(x + 2 == 0) then ...

x = NEG; if(Signs.eq(Signs.add(x,POS),ZERO)) then ...

{NEG,ZERO,POS}

Our Solutions

- Choice-bounded State Space Search
- “on-the-fly”, during model checking
- Abstract Counter-example Guided Concrete Simulation
- Exploit implementations of abstractions for Java programs
- Effective in practice
- Implemented in Java PathFinder tool

“Choose”-free state space search

- Theorem [Saidi:SAS’00]

Every path in the abstracted program where all assignments are deterministic is a path in the concrete program.

- Bias the model checker
- to look only at paths that do not include instructions that introduce non-determinism
- JPF model checker modified
- to detect non-deterministic choice (i.e. calls to Bandera.choose()); backtrack from those points

Case Study: DEOS Kernel (NASA Ames)

- Honeywell Dynamic Enforcement Operating System (DEOS)
- A real time operating system for integrated modular avionics
- Non-trivial concurrent program (1433 lines of code, 20 classes, 6 threads)
- Written in C++, translated into Java and Promela
- With a known bug
- Verification of the system exhausted 4 Gigabytes of memory without completion; abstraction needed

- Abstracted using data type abstraction
- Checked using JPF and SPIN
- Defect detected using choice-bounded search

Conclusion and Future Research Directions

- Tool support for abstraction enables verification of real properties of real programs
- Extend abstraction support for objects
- Heap abstractions tohandle an unbounded number of dynamically allocated objects
- Handle recursive procedures, unbounded number of processes
- Extend automation
- For selection and refinement based on counter-example analysis

Outline

- Bandera Project (Kansas Sate University):
- Tool Support for Program Abstraction and Abstract Counter-example Analysis
- NASA Ames Projects:
- Combining Symbolic Execution with (Explicit State) Model Checking
- Assumption Generation for Component Verification

Java Path Finder (NASA Ames)

- Model checker for Java programs
- Built on top of a custom made Java Virtual Machine
- Checks for deadlock and violation of assertions; LTL properties
- Support for abstraction:
- Predicate abstraction
- Bandera’s data abstraction
- Heuristic search

(PC=“path condition”)

n:S

PC:true

4

5

2

5

1

3

n:S

PC:S<=0

n:S

PC:S>0

...

n:S+1

PC:S>0

n:S+1

PC:S>0 & S+1>=3

n:S+1

PC:S>0 & S+1<3

...

...

Symbolic ExecutionUses “symbolic names” to represent program inputs

Code

void test(int n){

[1] if (n > 0) {

[2] n = n + 1;

[3] if (n < 3)

[4] ...

}

[5] ...

}

Symbolic Execution and JPF: Applications

- Extends JPF with a new form of abstraction
- Test case generation
- Abstract counter-example analysis and refinement
- Symbolic execution of multithreaded programs
- Parameter synthesis …

Implementation in JPF

- Easy:
- Uses Bandera’s type abstraction
- Uses Omega library (Java version)
- Manipulates sets of linear constraints over integer variables
- Can be used as a “symbolic execution tool with backtracking”
- Good for finding counter-examples
- No state matching!

void test(SymVal n) {

n = new SymVal();

if(SymOps.gt(n,new SymVal(0)){

n=SymOps.add(n,new SymVal(1));

...

}

(Possible) ImplementationCode

public class SymVal {

public SymVal() { ... }

public SymVal(int n) { ... }

public SymVal(SymVal s1, SymVal s2,

String ops) { ... } ...

}

public class SymOps {

public SymVal add(SymVal s1, SymVal s2){

return new SymVal(s1,s2,’+’);

}

public bool gt(SymVal s1, SymVal s2) {

bool result = Verify.chooseBool();

if(result) { // “true”

PC.addCondition(s1,s2,’>’);

}

else { // “false”

PC.addCondition(s1,s2,’<=‘);

}

PC.simplify();

return result;

} ... }

void test(int n) {

if (n > 0) {

n = n + 1;

...

}

PC:true

4

3

1

2

2

4

3

n:S,x:0

PC:0>=S

n:S,x:0

PC:true

n:S,x:0

PC:0<S

n:S,x:1

PC:0<S

n:S,x:1

PC:0<S & 1>=S

n:S,x:1

PC:0<S & 1<S

....

Problem: ConvergenceSymbolic execution tree

Code

void test(int n) {

[1] int x = 0;

[2] while(x < n)

[3] x = x + 1;

[4] }

Problem: Convergence

Solutions?

- Limit the search depth of MC
- Unwind loops a fixed number of times (similar to Bounded MC?)
- Discover “simple and practical” widening techniques
- Acceleration techniques
- Heuristics?
- Combine with “predicate abstraction” …

Relation to Bounded MC

- Extend BMC with symbolic variables?
- Widening for C programs?
- …

Outline

- Bandera Project (Kansas Sate University):
- Tool Support for Program Abstraction and Abstract Counter-example Analysis
- NASA Ames Projects:
- Combining Symbolic Execution with (Explicit State) Model Checking
- Assumption Generation for Component Verification

Assumption Generation for Component Verification

- Problem:

Environment

Property

? Environment Assumption ?

The “weakest” assumption A for component C:

for all environments E,

E |= A E || C |= P

Applications

- Support for modular verification
- Compositional verification
- Property decomposition
- Run-time monitoring of the environment
- Component retrieval
- Sub-module construction …

Implementation

- In Labeled Transition Systems Analyzer (LTSA) tool - Imperial college
- Supports compositional reachability analysis based on software architecture
- Incremental system design and verification:
- Component abstraction (hiding of internal actions)
- Minimization wrt. observational equivalence
- Both components and properties expressed as labeled transition systems

Mutual Exclusion Property:

E.acquire

W.acquire

E.enterCS

W.enterCS

W.acquire

E.release

||

E.exitCS

W.exitCS

Writer:

W.enterCS

W.exitCS

E.enterCS

Interface actions

W.exitCS

E.exitCS

W.enterCS

E.enterCS

E.exitCS

W.acquire

W.enterCS

W.exitCS

W.release

Example: A System and A Property||

(all environments)

Step 2: backward reachability

with error state

Property false!

(all environments)

Step 3: property extraction

(sub-set construction

and completion)

Assumption

Assumption GenerationStep 1: composition, hiding of

internal actions and

minimization

Composite System

E.release

E.enterCS

E.acquire

E.exitCS

E.release

E.exitCS

E.enterCS

E.release

E.enterCS

E.enterCS

t

E.enterCS

E.exitCS

E.exitCS

Backward Error Propagation (with t)

E.release

E.enterCS

E.acquire

E.exitCS

E.release

E.exitCS

E.enterCS

E.release

E.enterCS

E.enterCS

t

E.enterCS

E.exitCS

E.exitCS

Backward Error Propagation (with t)

E.release

E.enterCS

E.exitCS

E.release

E.enterCS

E.release

E.enterCS

E.enterCS

E.exitCS

E.exitCS

E.enterCS, E.exitCS

E.release

E.acquire

E.acquire

Property ExtractionE.acquire

E.enterCS

E.release

E.exitCS

E.enterCS

E.exitCS

E.enterCS

E.release

E.exitCS

Generated Assumption

E.acquire, E.release

E.enterCS, E.exitCS

E.release

E.acquire

E.acquire

E.acquire

E.enterCS

E.release

E.exitCS

Directions for Future Work

- Liveness /fairness
- Extend to other frameworks
- LTL checking (since we are interested only in error behaviors)
- Is the sub-set construction needed?
- Study other forms of composition …

Download Presentation

Connecting to Server..