270 likes | 465 Views
“ Implementing quantum algorithms using quantum logic gates made from optical components .”. Mark Tame. Promising Technologies for Quantum Computing. Ion Traps Quantum Dots Josephson Junctions Nuclear Spins in Silicon / Molecules Linear Optics (KLM proposal)
E N D
“Implementing quantum algorithms using quantum logic gates made from optical components.” Mark Tame
Promising Technologies for Quantum Computing • Ion Traps • Quantum Dots • Josephson Junctions • Nuclear Spins in Silicon / Molecules • Linear Optics (KLM proposal) E. Knill, R. Laflamme and G. J. Milburn, "A scheme forefficientquantum computation with linear optics",Nature 409, 46 (2001).
Three Key Principles in KLM Proposal • Conditional Non-linear Sign (NS) gates for two photon states (today) • Teleportation to achieve efficiency • Error Correction to achieve scalability
Conditional Non-linear Sign (NS) gates for two photon states • Part I – Optical Components • Part II – Quantum Logic Gates • Part III – Solving Quantum Algorithms
Dual Rail Basis b’ a’ b a Qubit: As opposed to:
B Bt b b b’ b’ a a a’ a’ Beamsplitter
Phase Shifter b b’ p a a’
B p Hadamard gate b b’ a a’ H > > | yout | yin
b b’ K a a’ Kerr gate Quantum Classical
> > > > | A | B | A’ | B’ CNOT – Version I (non-linear components) d’ d 0 0 c’ c = | 1 L > = | 1 L > K 1 1 B B b’ b 0 1 a’ a = | 0 L > = | 1 L > p p 1 0 H H UCN
CNOT – Version I (non-linear components) A B A’ B’ 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0
Non-linear Sign change gate ( NS gate ) | yc > = c2 | 2 > c1 | 1 > c0 | 0 > + + Btcb c’ c Bba Bba b’ b | 1 > q2 a’ a | 0 > q1 q1 | y 1 | y 2 | y 3 | y 4 > > > > c c’ NS b b’ | 1 > | 1 > Detection Condition (D.C) a a’ | 0 > | 0 >
> > > > | A’ | B | A | B’ CNOT – Version II (linear components based on KLM NS gate proposal) b’ b 0 0 > | 1 | 1 > NS D. C | 0 > | 0 > = | 1 L > = | 1 L > a a’ Bad Bad 1 1 Bba Bba NS d’ d | 1 > > 0 | 1 1 D. C | 0 > | 0 > c’ c = | 0 L > = | 1 L > 1 0 | y x | y y > >
CNOT – Version II (linear components) A B A’ B’ 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0
Theoretical Experimental J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph and D. Branning, “Demonstration of an all-optical quantum computer controlled-NOT gate",Nature 426, 264 (2003). “The next step will be to incorporate the gate reported here in simple optical circuits to demonstrate simple algorithms and error correcting schemes.”
Deutsch’s Problem Classical: Requires at least 2 attempts to find out if f(x) is balanced or constant Quantum:
Quantum Optical Circuit for Deutsch’s Problem B B d’ d 1 | 0 L > | x > | x > c’ c p p 0 H H Uf B b’ b 0 | 1 L > | y + f(x) > | y > a’ a p 1 H Depends on f(x)
Quantum Optical Circuit for generalised Deutsch/Jozsa Algorithm Classical: Requires around this many attempts to find out if f(x) is balanced or constant Quantum: Efficiency problems from Detection Conditions for NS gates in Quantum CNOT gates +/- 1 if f(x) is const 0 if f(x) is balanced Amplitude for all zero states: is
Next Time • Teleportation to achieve efficiency • Error Correction to achieve scalability • Decoherence-free subspaces References: E. Knill, R. Laflamme and G. J. Milburn, "A scheme forefficientquantum computation with linear optics",Nature 409, 46 (2001). J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph and D. Branning, “Demonstration of an all-optical quantum computer controlled-NOT gate",Nature 426, 264 (2003). D. Deutsch and R. Jozsa, "Rapid solution of problems by quantum computation", Proceedings of the Royal Society of London A 439 (1992) 553-558. M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information”, Cambridge University Press, Cambridge (2000).