Quantum Computing & Algorithms - PowerPoint PPT Presentation

oshin
quantum computing algorithms n.
Skip this Video
Loading SlideShow in 5 Seconds..
Quantum Computing & Algorithms PowerPoint Presentation
Download Presentation
Quantum Computing & Algorithms

play fullscreen
1 / 41
Download Presentation
Quantum Computing & Algorithms
446 Views
Download Presentation

Quantum Computing & Algorithms

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Quantum Computing & Algorithms Loginov Oleg Department of Computational Physics Saint-Petersburg State University 2004

  2. Contents • Fundamentals • Logic • Qubit (short of quantum bit) • Operators • Multi-qubit systems • Entangled states • Quantum Circuits (Gates) • Computational Algorithms • Shor’s Algorithm • Grover’s Algorithm

  3. Hilbert Space Inner product: Norm: Dual vector: Outer product:

  4. Qubit (short of quantum bit) Measurement non-deterministiccollapse Two possible outputs (constraint) State: Computational basis

  5. Operators Unitary: Tensor product For operators

  6. Multi-qubit Systems N-qubit quantum computer states 2-qubit QC:

  7. Entangled states Entangled state Example: 2-qubitsystem

  8. Quantum Computer

  9. NOT Gate

  10. One-Qubit Hadamard Gate

  11. Multi-Qubit Hadamard Gate

  12. Control-NOT gate

  13. Conclusion • Qubits have probabilistic nature • N-qubit register have 2^N basis functions • Gates that are direct product of other gates do not produce entanglement. • cNOT and one-qubit gates form a universal set of gates. • In principle there is an infinite number unitary operators U.

  14. Quantum Algorithms • Shor’s Algorithm (Factorization) • Grover’s Algorithm • Wavelet Q-Search • Extended Search • Root Calculator • Algorithm for Triangle Problem

  15. Factorization I non-trivial factors of N

  16. Factorization II Example: N = 21

  17. Shor #0 t n

  18. Shor #1 t n

  19. Shor #2 t n

  20. Shor #3 t n

  21. Discrete Fourier Transform

  22. QDFT

  23. QDFT 1 0

  24. Before Q-DFT Probability distribution (1 register)

  25. After QFDT Probability distribution (1 register)

  26. Example – Step 1 If x is not coprime to N, then use GCD(x, N), else - Shor

  27. Example – Step 2

  28. Example – Before QDFT 2-nd register:

  29. Example – After QDFT 0 85 171 256 341 427 Probability 0.41e-03 0.25e-03 0.39e-04 j 0 256 341 427 85 171 Probability contribution Prob(j)

  30. Continued Fraction Approximation 0 85 171 256 341 427

  31. Conclusion • Atomic sizes • Probabilistic character • Speed • Classical machine – • Quantum machine – timesteps timesteps Example: 300 digit code – 1E06 years1000 digit code – 1E25 years several hours

  32. Search Task N states: The problem is identify the state Condition:

  33. Grover’s Algorithm Take a n-qubit register, where After n-dimension Hadamard Gate: Several iterations of Rotate Phase Operator and Diffusion Operator Measurement

  34. Rotate Phase Operator i 0 1 2 3 4 5 6 i 0 1 2 3 4 5 6

  35. Diffusion Operator i i 0 1 2 3 4 0 1 2 3 4

  36. Measurement Average amplitude: Addition in each step: Exact calculations:

  37. Experimental Scheme in Optics H H Rotate Gate H H H Z H

  38. Rotate Optical Gate

  39. CNOT optical gate control target

  40. Conclusion Advantage: • Speed instead of • Disadvantages: • Difficulty of assigning data

  41. Acknowledgement • Prof. A.V. Tsiganov • Prof. S.Y. Slavyanov • My mom and all my friends…