1 / 39

Meso - and Macrofauna Lecture

Meso - and Macrofauna Lecture. CSS 360 Fall 2011. Soil fauna and suppression of plant pathogens. Collembola (springtails) are enhanced by green manures and in turn regulate pythium in sugar beets and suppress Rhizoctonia “root killer” stem canker in potato

prem
Download Presentation

Meso - and Macrofauna Lecture

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Meso- and Macrofauna Lecture CSS 360 Fall 2011

  2. Soil fauna and suppression of plant pathogens • Collembola (springtails) are enhanced by green manures and in turn regulate pythium in sugar beets and suppress Rhizoctonia “root killer” stem canker in potato • Springtails rapidly consume Fusarium and Rhizoctonia, reducing spores of Fusarium by 92% FusariumRhizoctoniaPythium blight

  3. Lions of the microbe zoo:Mites and Nematodes

  4. Representation of detrital food web in shortgrass prairie. Fungal-feeding mites are separated into two groups (I and II) to distinguish the slow-growing cryptostigmatids from faster-growing taxa. Flows omitted from the figure for the sake of clarity include transfers from every organism to the substrate pools (death) and transfers from every animal to the substrate pools (defecation) and to inorganic N (ammonification).

  5. Overview – Arthropods in the soil • Arthropods in a square mile of crop land: • Several dozen species • In a square mile of forest soil: • Several thousand species • MOSTsoil dwelling arthropods eat fungi, worms, or other arthropods • Root feeders and dead plant shredders are less abundant • As they feed arthropods mix and aerate the soil, regulate the size of other soil organisms, and shred organic matter.

  6. Arthropods such as mites200 species of mites in this microscope view were extracted from one square foot of the top 2 inches of forest litter and soil Role: Important in nutrient cycling and predation

  7. Microshredders; here immature oribatid mites skeletonize plant leaves

  8. Nematode abundance in 3 organic inputs and 3 farming intensities Seasonal average of plant available N during the 2004 growing season in three farming/mgmt intensities and 3 organic inputs Seasonal means of nematode trophic abundance Why do you think plant parasite abundance decreases at intermediate intensity?

  9. 3 ecological groups of earthworms Endogeic example: Aporrectodea caliginosa (angle worms) Epigeic example: Lumbricus rubellus (leaf worms) Anecic example: Lumbricus terrestris (nightcrawlers)

  10. Earthworm Anatomy • Feel vibrations through ground • Setae= bristles for moving • Can regrow tail • Mucus secretion • Create stable tunnels • Cold-blooded • Invertebrates • No eyes (Light sensitive) • Breathe through skin -Can live underwater

  11. Earthworm Effects on Soil Functions • Promote aggregation and alter soil structure and water dynamics • Mix soil and redistribute nutrients • Alter microbial communities, stimulate microbial activity • In forest, can dramatically change litter and duff layers, may have a long-term effects on plants • Enrich soil through castings and digestion • Casts = several tonnes / acre / yr Thin layer of litter and no duff in a forest with earthworms Thick layer of duff and litter in a forest without worms

  12. Earthworm addition markedly increases both large and small macropore abundance Pore generation also a function of residue…why?

  13. Earthworm Community Dynamics • Disturbance decreases earthworm abundance (e.g. tillage) • Residue type influences abundance (corn vs. soybean) • Soil amendment (e.g. manure) influences abundance

  14. Macroarthropods Includes spiders, termites, ants, beetles and others Body lengths from 10 mm to 15 cm (centipede) Many are transient or temporary soil residents Most are litter feeders but some eatmicroarthropodsand other organisms or weed seeds (beetles) Churn, mix, and move soil scarab beetle ant mound termite mound

  15. Energy Flow in a Grassland Model The Decomposer Subsystem = Production Consumption - Excretion = Assimilation - Respiration • DECOMPOSER SUBSYSTEM • Decomposers+detritivores • microbial decomposers • invertebrate detritivores • Microbivores • invertebrates • Carnivores • vertebrates • invertebrates • TOTAL 136.4 15.2 10.9 0.04 0.65 192. 0 12.1 7.6 0.01 0.13 35. 136.4 3.1 3.3 0.03 0.52 157. 81.8 1.8 2.0 0.029 0.36 99. 54.6 1.3 1.3 0.001 0.16 58 - = - = - = - = - = - = - = - = - = - = - = - = Calculated consumption, assimilation, egestion, production and respiration by heterotrophs per 100 J m-2 net annual primary production in a hypothetical grassland community (after Heal & MacLean, 1975 in Begon et al. 1986).

  16. Case study of bio-control Japanese beetles are a wide-spectrum pest: in large numbers the grubs chew on grass roots, and the adults shred flowers (roses, hibiscus) and contaminate blueberry A range of biocontrol options are available

  17. Japanese beetle life cycle • Soon after emergence, beetles mate • Females seek moist, well maintained areas of turf to deposit their eggs. • Eggs are laid in the upper 2 to 3 inches of the soil • 40 to 60 eggs laid over a 30- to 45-day lifespan • Grubs grow and emerge the following season • Dry soil will stress the beetle

  18. Natural microbial control • Japanese beetle grubs are infected by many species of bacteria, fungi, protozoans and nematodes – these are providing control! • Michigan is a new area for Japanese beetle, natural control is not always well established

  19. Biocontrol options Microbe control • Milky disease (Bacilliuspopilliae) • B.t. strains (Bacilliusthuringensis) Macroorganism control • Parasitic wasps and flies • Parasitic nematodes • Trap crops

  20. Trap crops • Border of plants attractive to Japanese beetle (cocklebur, evening primrose, dwarf mallow), additional control is required • Toxic and attractive plants are best as trap crops: Castorbean and Bottlebrush

  21. Biocontrol:Heterorhabditis bacteriophor (Hb) (parasitic nematodes) Biocontrol of white grubs (e.g., Japanese beetle)

  22. Biocontrol - Slow to establish but BROADSPECTRUM • Application: Nematodes can be effective on 200 plus soil-dwelling pests, once established • Research continues to find strains that work particularly well on a particular pest. HeterorhabditisbacteriophorHb are the best for controlling beetle grubs.

  23. Nematode bio-control: variable results • BioSafe, BioVector commercial names for Steinememacarpocapsae(nematode) • Wide range of effectiveness (cool soil temperatures at application or poor product quality are two problems)

  24. Effective example:Milky spore • Easy to apply, effective in areas with long summers/warm soil periods (less in NE) • Not compatible with insecticides, because an insecticide will kill the host, the grubs (some grubs need to be present for milky spore to spread and establish) • May require a 2 to 4 year establishment period • Once established will provide broadspecturm control of many grubs over the long-term (20 or more years)

  25. Blueberry ground cover • Grass centers are a host for Japanese beetles • Replace grass between blueberry rows with clover • Challenges: acid soil, vigorous ground cover needed to compete with weeds and prevent erosion

  26. Wasp and Fly Parasites of JB • The most effective wasp parasites are the Tiphia wasps. • Introduced from Japan, Tiphiapopilliavora, and Korea, T. vernalis, these species attack the grub stage in thatch or soil. • The only major adult Japanese beetle parasite is a fly imported from Japan, Istochetaaldrichi

  27. Summary - Japanese beetle control: • Know the life cycle – control the grub or adult (most control focuses on juvenile stage) • Find parasites or predators to control • Use micro or macro organisms, and the combination • For exotic pests such as JB, search for biocontrol agents in home region

  28. Biology and management of nematodes on turfgrass • Damage caused by: dagger (Xiphinemaspp), root knot (Meloidogynespp), stubby root (Trichodorus) • In a typical golf course liter of soil: 50 to 33,000 root knot nematodes found • California challenge: Anguinapacificae

  29. Assessment of nematode control in Calif. golf courses(Westerdahl et al., 2006) • Digital images used to assess golf course grass color • Visual inspection by experienced supervisors also ranked turf quality • Poaannua greens

  30. Nematicides gave moderate to nil control Biocontrol studies underway

  31. Overview of biological control approaches • Three general approaches to biological control • Importation, augmentation and conservation of natural enemies. • Each of these techniques can be used either alone or in combination in a biological control program.

  32. Biocontrol agent and host cycles ________ Control agent population ________ Pest (host) population Economic threshold for host population

  33. Summary - Biological control • Predation, Parasitism • Background ‘natural control’: species of bacteria, fungi, protozoans and nematodes • Importation, augmentation and conservation of natural enemies • Plants (diverse borders and economic crop species) can play an important role • Future? Genetic engineering augmentation of microorganisms

  34. Reading • Crow.pdf on website • “Lab Report #3” on website • New Schedule on website • No Class Wednesday • Monday will be final lecture • “Synthesis of course material”

More Related