1 / 9

CDT Static Analysis Features CDT Developer Summit - Ottawa

CDT Static Analysis Features CDT Developer Summit - Ottawa. Beth Tibbitts tibbitts@us.ibm.com September 20, 2006. This work has been supported in part by the Defense Advanced Research Projects Agency (DARPA) under contract No. NBCH30390004. The Problem.

Download Presentation

CDT Static Analysis Features CDT Developer Summit - Ottawa

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CDT Static Analysis FeaturesCDT Developer Summit - Ottawa Beth Tibbitts tibbitts@us.ibm.com September 20, 2006 This work has been supported in part by the Defense Advanced Research Projects Agency (DARPA) under contract No. NBCH30390004.

  2. The Problem • Static Analysis of C programs is useful • Existing Abstract Syntax Tree (AST) in Eclipse CDT provides basic navigation and information, but needs more

  3. CDT AST Extensions • Enhance existing CASTNode and Visitor • bottom-up traversal • Add other additional graphs: • Call Graph • Control Flow Graph • Data Dependence Graph • Traversal of these new graphs available in: • Topological Order • Reverse Topological Order

  4. Bottom-up AST traversal org.eclipse.cdt.core.dom.ast.ASTVisitor org.eclipse.cdt.core.dom.ast.c.CASTVisitor Existing: public int visit(IASTxxx..){ return PROCESS_CONTINUE; } New: public int leave(IASTxxx..){ return PROCESS_CONTINUE; }

  5. #include "mpi.h" #include "stdio.h" void foo(int x); void gee(int x); void kei(int x); void foo(int x){ x ++; gee(x); } void gee(int x){ x *= 3; kei(x); } void kei(int x){ x = x % 10; foo(x); } void a(int x){ x --; } int main3(int argc, char* argv[]){ int x = 0; foo(x); a(x); } Call Graph main foo a gee kei Recursive calls detected… A cycle is detected on foo, gee and kei

  6. Control Flow Graph & Data Flow Dependence Graph– sample program if if (my_rank !=0){ /* create message */ sprintf(message, "Greetings from process %d!", my_rank); dest = 0; /* use strlen+1 so that '\0' get transmitted */ MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); MPI_Barrier(MPI_COMM_WORLD); } else{ printf("From process 0: Num processes: %d\n",p); for (source = 1; source < p; source++) { MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status); printf("%s\n",message); } MPI_Barrier(MPI_COMM_WORLD); } /* shut down MPI */ MPI_Finalize(); free(array); return 0; } #include <stdio.h> #include <string.h> #include "mpi.h" // Sample MPI program int main(int argc, char* argv[]){ printf("Hello MPI World the original.\n"); int my_rank; /* rank of process */ int p; /* number of processes */ int source; /* rank of sender */ int dest; /* rank of receiver */ int tag=0; /* tag for messages */ char message[100], *tmp; /* storage for message */ MPI_Status status ; /* return status for receive */ int * array; /* start up MPI */ array = (int *)malloc(sizeof(int) * 10); MPI_Init(&argc, &argv); /* find out process rank */ MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); /* find out number of processes */ MPI_Comm_size(MPI_COMM_WORLD, &p); MPI_Barrier(MPI_COMM_WORLD); for

  7. Control Flow Graph entry A B printf MPI_Comm_rank() free(array) Int my_rank MPI_Comm_size return 0 Int p if MPI_Barrier() exit Int source my_rank != 0 Int dest sprintf printf Int tag = 0 dest = 0 source = 1 Char message[100], *tmp for MPI_Send() source < p MPI_Status status MPI_Barrier() MPI_Barrier() MPI_Recv Int *array printf (join block) array = malloc() source ++ MPI_Finalize() MPI_Init() B A

  8. Work in Progress (graph not complete) Data Dependence Graph (DDG) entry A B printf MPI_Comm_rank() free(array) Int my_rank MPI_Comm_size return 0 Int p MPI_Barrier() exit Int source my_rank != 0 Int dest sprintf printf Control flow Control flow Int tag = 0 dest = 0 Data flow source = 1 Char message[100], *tmp MPI_Send() source < p MPI_Status status MPI_Barrier() MPI_Barrier() MPI_Recv Int *array printf (join block) array = malloc() source ++ MPI_Finalize() MPI_Init() B A

  9. Summary • MPI Barrier Analysis uses these structures • Is this valuable as an addition to CDT? • Other Future plans • Parallel Tools Platform (PTP) Analysis: • Static and Dynamic Analysis of MPI, OpenMP, and LAPI programs for detection of common errors • Code Refactorings for Performance Optimization, e.g. refactoring for improved computation / communication overlap

More Related