110 likes | 302 Views
经济数学. 制作 : 巨进化. 制作 : 巨进化. 数 学 实 验 ( 下 ). 数 学 实 验 ( 下 ). 2008 年 4 月. 2008 年 4 月. MATLAB MATLAB MATLAB MATLAB MATLAB MATLAB. MATLAB. 经济数学. 二元函数偏导数与极值实验. 求二元函数偏导数的实验 diff(f, ’ x ’ ) :求函数 f 关于 x 的一阶偏导数 diff(f, ’ x ’ ,n) :求函数 f 关于 x 的 n 阶偏导数 求二元函数极值的实验
E N D
经济数学 制作:巨进化 制作:巨进化 数 学 实 验 (下) 数 学 实 验 (下) 2008年4月 2008年4月 MATLAB MATLAB MATLAB MATLAB MATLAB MATLAB MATLAB
经济数学 二元函数偏导数与极值实验 • 求二元函数偏导数的实验 • diff(f,’x’):求函数f关于x的一阶偏导数 • diff(f,’x’,n):求函数f关于x的n阶偏导数 • 求二元函数极值的实验 • fminunc(f,x0):求函数f在x0附近的极值点(拟牛顿法) • fminsearch(f,x0):求函数f在x0附近的极值点(单纯形法) 11.1 MATLAB中求二元函数偏导数与极值实验
经济数学 例1 设,求 , • 输出dfdx = log(y)*exp(1+x*log(y)) • df2dy2 = -x/y^2*exp(1+x*log(y)) • +x^2/y^2*exp(1+x*log(y)) • 输入>> syms x y f • >> f=exp(1+x*log(y)); • >> dfdx=diff(f,’x’); • >> df2dy2=diff(f,’y’,2); 例2 求在(0,5,4)附近的极小值 • 输出-0.0021,4.7124,6.2832 • -2.000 • 输入>> syms x y z • >>x0=[0,5,4]; • >> f=inline(‘x^4+sin(y)-cos(z)’); • >> fminsearch(f,x0) 11.1 MATLAB中求二元函数偏导数与极值实验
经济数学 矩阵的输入及生成 求秩、求逆运算 线性方程组的求解 矩阵的一般运算 矩阵运算及变换 • A±B:矩阵的和差运算 • k*A:矩阵的数乘运算 • A*B:矩阵的乘法运算 • A’:矩阵的转置运算 • A^k:矩阵的乘幂运算 • 方括号内逐行输入元素 • 逗号或空格:同行 • 分号:换行 • eye(n)zeros(m,n)等 • “\”:左除 X=A\B • 方程AX=B的解 • “/”:右除 X=B/A • 方程XA=B的解 • inv(A):求逆矩阵 • rank(A):求秩 • rref(A):求最简阶梯阵 • det(A):求行列式的值 11.2 MATLAB中矩阵运算及变换实验
经济数学 • 例2 设 , • 求A*B,B*A,BT*AT • 输入>> a=[-1;2]; b=[3,-7]; • >> a*b,b*a • >> b’*a’ • 例1 输入矩阵 • 输入>> a=[2,0,-3;-1,7,0] • 输出a =2 0 -3 -1 7 0 • 例4 设 , • 求解AX=B,XA=B • 输入 >> a=[2,1;1,2]; b=[1,2;-1,4]; • >> x1=a\b • >> x2=b/a • 例3 设 , • 求 ,A的秩,A最简阶梯阵, A的逆. • 输入>> a=[-1,0,1;2,1,0;-3,2,-5] • >> d=det(a),r=rank(a), • >> f=rref(a),i=inv(a) 2 1 3 4 11.2 MATLAB中矩阵运算及变换实验
经济数学 均匀分布 unifcdf(c,a,b) 泊松分布 指数分布 poisspdf(k,lambda) poisscdf(k,lambda) expcdf(k,lambda) 3 2 4 概率 计算 二项分布 正态分布 1 5 binopdf(k,n,p) normcdf(c,mu,sigma) binocdf(k,n,p) 11.3 MATLAB中随机变量的概率与数字特征的实验
经济数学 二项分布 泊松分布 • 例2 设随机变量 • 求 , • 例1 设随机变量 • 求 , 离散型随机变量的概率 • 输入:p1=poisspdf(7,3) 输出:p1 =0.0216 • 输入:p2=poisscdf(7,12) • 输出:p2 =0.0895 • 输入:p1=binopdf(6,50,0.1) 输出:p1 =0.1541 • 输入:p2=binocdf(13,50,0.1) • 输出:p2 =0.9997 11.3 MATLAB中随机变量的概率与数字特征的实验
经济数学 均匀分布 均匀分布 设 ,求 unifcdf(3,-1,7) 设 ,求 expcdf(3,6)-expcdf(1,6) 指数分布 正态分布 指数分布 正态分布 设 ,求 1-normcdf(6,2,3) 连续型随机变量的概率 11.3 MATLAB中随机变量的概率与数字特征的实验
经济数学 1. 离散型随机变量的期望与方差 2.连续型随机变量的期望与方差 • 期望 sum(X.*P) • 方差 sum(X.^2.*P)-(sum(X.*P))^2 • 二项分布:[E,D]=binostat(n,p) • 泊松分布:[E,D]=poisstat(n,p) • 期望 int(x*f,x,-inf,+inf) • 方差 int(x^2*f,x,-inf,+inf)-(int(x*f,x,-inf,+inf))^2 • 均匀分布: [E,D]=unifstat(a,b) • 指数分布: [E,D]=expstat(1/lambda) • 正态分布: [E,D]=normstat(mu,sigma) 11.3 MATLAB中随机变量的概率与数字特征的实验
经济数学 例1 例2 例3 [E,D]=binostat(100,0.6) [E,D]=unifstat(3,13) [E,D]=normstat(-1,10) 数字特征 11.3 MATLAB中随机变量的概率与数字特征的实验
经济数学 MATLAB 实验训练题 课本P315-P318 第11章 MATLAB数学实验(下)