270 likes | 336 Views
Learn about phasors, complex numbers, and wave parameters for representing waves like sinusoidal waves and traveling waves. Understand wave propagation and applications in the electromagnetic spectrum. See examples and applications of phasors in analyzing AC circuits.
E N D
Ch1-Phasors (페이저)페이저: 정현파 파동을 표현하기 위한 복소수
Traveling Waves (진행파) Direction of propagation (전파진행 방향) Wavefront (파면; 동일시간에 방사되었음) f+(x-vt) (일반적인 파동의 표현식)
f+(x) t=0 x0=vt0 f+(x-x0) x1=vt1 t=t0 f+(x-x1) t=t1 xt=vt f+(x-xt) t x1 xt x0 Wave (파동) propagation (전파) f+(x-vt)
Sinusoidal Wave (정편파) ASin(x-vt) For propagation direction, only relative sign between x and t matters
Sinusoidal Wave ASin(x+vt) For propagation direction, only relative sign between x and t matters
Decaying Sinusoid Ae-axSin(x-vt) Propagation in a lossy medium
Electromagnetic Spectrum Application determined by wavelength http://lectureonline.cl.msu.edu/~mmp/applist/Spectrum/s.htm
Wave Parameters (파동 패러미터) y =Asin(ωt-βx) y: electric field (전기장 파동) x: position on x axis (위치) Amplitude (진폭) = A Period (주기) = T Frequency (주파수) f = 1/T Angular frequency (각속도) w = 2pf = 2p/T Velocity (속도) v = ω/β Propagation constant (전파상수) β = 2p/l l : Wavelength (파장) y = Asin[2pt/T]:시간 정현파 y = Asin[2px/l]: 공간 정현파 y = Asin[wt-bx]: 전자파, 광파
Example • For the sinusoid given below, find: • amplitude • phase angle • angular frequency • period • frequency
Solution Compare with the general sinusoid equation: Thus, we get: • amplitude is Vm= 12 V • phase angle is, = 10 • angular frequency is, = 50 rad/s • period is, T = 2/ = 0.1257 s • frequency is, f = 1/T = 7.958 Hz
Wave and Complex Number Wave equation: Phasor: Complex number: Wave phasor: Wave's magnitude and phase at x
ejq = cos(q) + jsin(q) : Euler’s Formula Profound!! Connects algebra with trig! Converts PDEs into algebraic equations!! d/dq[ej(aq)] = ja[ej(aq)] ∫dqej(aq) = ej(aq)/ja Trig identities become algebraic identities!! ejq1.ejq2 = ej(q1+q2) Complex numbers
ejq = cos(q) + jsin(q) • e-jq = cos(q) - jsin(q) • cos(q) = [ejq+e-jq]/2 • sin(q) = [ejq-e-jq]/2j sin(A+B) = [ej(A+B)-e-j(A+B)]/2j = [ejA.ejB-e-jA.e-jB]/2j = ([cosA+jsinA][cosB+jsinB]-[cosA-jsinA][cosB-jsinB])/2j = ([cosAcosB+jsinAcosB+jcosAsinB-sinAsinB] -[cosAcosB-jsinAcosB-jcosAsinB+sinAsinB])/2j = sinAcosB-cosAsinB
ejq = cos(q) + jsin(q) z = |z|ejq = |z|q z* = |z|e-jq = |z|-q z1z2= (|z1|ejq1)(|z2|ejq2) = |z1||z2|(q1 + q2) • zn=|z|nnq • z1/2=|z|1/2q/2 (q unknown upto2pm) • z-1=|z|-1-q • z1/z2= (|z1|ejq1)/(|z2|ejq2) = |z1|/|z2|(q1 - q2)
z = a + jb a: real part, a = Re(z) b: imaginary part, b = Im(z) z* = a – jb Complex Conjugate zz* = a2 + b2 |z| = zz* = (a2+b2) Magnitude/Norm/Amplitude 1/z = z*/|z|2 = (a-jb)/(a2+b2) Rationalizing z=|z|ejq= |z|(cosq + jsinq) Phasor notation |z|cosq = a, |z|sinq = b Components |z| = (a2+b2), q = tan-1(b/a)
Phasor • Sinusoid: • Phasor: A complex number quantity with: • Magnitude (Z): the length of vector. • Angle () : measured from (0o) horizontal. • Written form: v의 페이저
i(t) = 3 sin (2pft+30o) v(t) = 4 sin (q-60o) p(t) = 1 +5 sin (wt-150o) Examples
Phasor: lead (앞섬), lag(지연) • A leads B • B leads C • C leads A
cosine, sine 함수의 페이저 cos(wt) = Re[ejwt] →cos(wt): 1ej0 sin(wt) = Im[ejwt] = Re[-jejwt] = Re[ej(wt-p/2)] → sin(wt): 1e-jπ/2
Phasor: 합, 미분, 적분, 곱 두 파동함수의 곱은 페이저로 표현되지 않는다.
Phasor로부터 원래의 시간함수 복원 주파수가 100MHz, 진폭(크기)가 10V, 위상이 30°인 파동에 대해 1) 페이저를 구하라. 답: 10ej30° 2) 페이저를 복소수 평면에 도시하라. 답: 2) 파동시간함수를 구하라. 답: v(t)=10cos(2π·108t+30º)
교류회로 연습문제 원에서 바라 본 임피던스를 실수와 허수의 합으로 표현, 크기와 위상으로 표현, 전류의 시간함수를 구하라.