1 / 30

Advanced Compressor Water Wash Technologies 진보된 압축기 수세정 기술

Advanced Compressor Water Wash Technologies 진보된 압축기 수세정 기술. Presented By: Robert Burke Applications Engineering Manager Monday, May 18 th 2009 HURECO CO., LTD 서울특별시 금천구 가산동 345-9 SK 트윈타워 ㅁ -707 Tel . 02-864-8100. Fax. 02-865-4335 E-mail : hojoongkim@hureco.co.kr.

olivia-hyde
Download Presentation

Advanced Compressor Water Wash Technologies 진보된 압축기 수세정 기술

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Advanced Compressor Water Wash Technologies진보된 압축기 수세정 기술 Presented By: Robert Burke Applications Engineering Manager Monday, May 18th 2009 HURECO CO., LTD 서울특별시 금천구 가산동 345-9 SK트윈타워 ㅁ-707 Tel . 02-864-8100. Fax. 02-865-4335 E-mail : hojoongkim@hureco.co.kr

  2. Compressor Efficiency- An Operational Imperative압축기 효율 – 운전상의 불가피성 General Gas Turbine Energy Balance (전형적인 가스터빈 에너지 균형) 출력 의 60%가 압축기 운전

  3. Typical Compressor Contaminants대표적인 압축기 오염물질 • Stage 2 압축기 • 연질의 침전물 과 공기에 의한 오염 • 카본 침착 • 먼지, 실리카 • 기타 주위 공기 오염물 • 베어링에서 누출 되는 기름 • Stage 17 압축기 • 단단한 침전물 • 날게 표면에 붙어 굳어짐 • 입구 cooling water로 부터의 광물질 • 성능/운전에 주는 영향 • 날개표면을 거칠게 함 • 공기흐름을 방해 • 압축기 효율 손실 • 압축기에서 나오는 압력 손실 • 압축기 방출온도 상승 • 터빈의 출력 저하 • SPFC 증가, 열비(Heat Rate) 저하

  4. Typical Installed Base System Performance Practices전형적인 기존 시스템의 성능사례 • 전형적인 GT 기능저하 • 45일 주기 OFF-LINE세척 • 1일 가동정지/OFF-LINE • 년간 8일 • 수익 감소 • 일일 출력 손실 • 정비 비용 • 부대 경비 ONLINE 세척 안했을때 GT 출력 하락표 • OEM 세척기의 단점 • 가동정지 후 세척 • 저압 세척 • 많은 세척 수 사용, 1000 겔론 • 시간이 오래 걸림 연마제 세척: • MAJOR OVERHAUL 필요함 • WALLNUT SHELL – COOLING HOLE이 막힘 Off-line wash

  5. Improved Design/ Application Process개선된 설계/ 프로세스적용 • 최적의 세척 성능을 내기 위한 방안 : • 최적화된 비말(작은 물방울)은 최적의 운동량을 만듬 • 노즐과 압력 선택 • 60 TO 80 BAR,80-250 microns D43 물방울 생성 • 부착물 용해를 위한 세정 수의 온도 60 deg. C • 중심부를 커버하기 위한 노즐 위치선정 • CFD MODEL 예측 • 0.33의 공기, 세정수 비율을 얻기 위한 세정시간과 물량 • 세정시간 3-5분, 세정물량 분당 5-250 리터 • Plant Control과 PLC를 연결을 통하여 자동화된 운전 • 물방울 분사를 위한 기하학 및 압력 • 속도 부분과 조화를 맞춘 물방울 분사 • 공기의 흐르는 방향으로 압축기 내부로 들어가도록 틈과 위치 선정 • 정밀하고 독특한 기계적 결합구조의 제품

  6. Droplet Characterization물방울 특성은 각 터빈마다 각기 다른 물방울 사이즈를 사용. -- 노즐이 다름. LASER로 물방울 사이즈 측정 및노즐에서 분사 속도 측정 (PDA-PHASE DOPPLER 측정법) • 각 노즐별특성화 • 크기 분배 • 속도 분배

  7. Wind Tunnel Testing풍동 시험 • 목적 • Base Load 동작 모의 시험 • 물방울 특성 • 물방울 크기 분배 • 물방울 속도 • CFD 모델과 비교 • SPECIFICATION • Base Load 조건 • 15KW 송풍기 5KG/S 풍동생성 • 속도 마하 0.5 • LASER에 의한 물방울크기 측정 • 여러 위치와 속도에서 물방울 측정 • 결과 • CFD 모델이 전형적 모델임을 확인 • 물방울 분배 확인 • 물방울 사이즈 • 물방울 속도 • 물방울 깨짐 • 목 적: • 날개의 습분 상태 이해 • 고정날개 물을 흘림 • 부식가능성 이해 • Specifications: • FLOW RATE의 변화 • 속도의 변화 • Laser SPECTROMETER로 물방울 싸이즈 측정 • 여러 위치와 속도로 물방울 측정 • 결 과: • 많은 물방울이 작은 리벳 머리모양의 흔적을 남김 • 밑으로 흐르는 물방울은 부식을 일으키지 않음

  8. CFD Tool & Nozzle Placement Definition GT입구 기하학적 체계를 GTE에서 개발한 CFD CODE에 넣고, 공기흐름을 K-EPSILON MODEL로 SIMULATE함 다음단계로 많은 량의 물분자를 – 같은 크기, 량, 속도, 각도를 가진--MATLAB을 사용하여 물방을을 공기흐름속으로 분사하여 물방울 의 궤도를 살핌. Water Mass at 60% Compressor Inlet

  9. Erosion Study- Typical Drop Strike Pressure Side- Tangential Velocity 물방울이 날게에 부딭치는 속도와 분포

  10. Erosion Model • 많은 종류의 시험기계와 물질을 가지고 시험함. • 상관관계가 아직 새로운 환경하에서 오랜 기간 예측함에 미약함. • -VOL:METAL 부식량 • -Flux: 물이 표면에 닿는 량 (M3/M2/SEC) • -NER: METAL의 일반 부식 저항력 (=4 FOR 400 SSL) • -V: 보통 충격 속도 (M/SEC) • -D: 물방울 지름(mm) • -T: 총 세척 시간 (SEC) • 충격속도에 대단히 민감함 • 120000시간 운전시 5mm 정도 마모 • Example Calculation: • V=350 m/sec, D=180 MICRONS, NER: 4 (410 S니) • T=3min/day * 365/YR * 30YR*60s/min=3.942*106 sec • WATER FLUX: .549 * 10-3m/sec • FOR THE BEST STELLITE, NER=50, VOLUME ERODE=1.6mm 5 mm of wear in 120000 operating hours

  11. Reverse Flow Bellmouth Installation (제작사) • Cone Mounted Design • Wash ports usually built in • Good performance for offline wash • Poor performance for online wash • Water builds on hub • (STRUT에 물방울이 부딪쳐 HUB에 물이 생김) Start Animation

  12. GTE Bellmouth Installation • Bellmouth Mounted Line of Site Design • GTE preferred design • Nozzle aimed with air stream Acceptable online performance • Approximately 30-50% R0 • 만족할 수있는 ONLINE성능시 R0에 30-50%의 물이 뿌려짐 • Good offline performance • Approximately 20-25% R0 • 최적의 OFF LINE 성능시에는 R0에 20-25% 뿌려짐 Start Animation

  13. Design Evaluation Coverage- 7EA • Simplicity & Functonality: • 7 Nozzles; each located midspan between each strut (각 지주 중앙에 위치한다) • Nozzle은Bellmouth를 통해 삽입한다. • Optimized Nozzle Placement (최적의 노즐배치) • Single Position for both wash cycles • Offline WW • Online WW • Obsolete OEM Nozzles & Positions(기존노즐없앰)

  14. Design Objectives: Droplet Size • Offline WW • 70% by volume @ 20% span • Online WW • 55% by volume @ 60% span • Air Flow • 289 kg/sec • Wash Fluid • 95-110 l/min • 물방울 크기, 분사 압력, 노즐등 모두 ONLINE시나 OFF LINE시 같이 쓰임. • 단지 다른것은 엔징 속도임- OFF LINE 시에는 800 RPM, ON LINE 시에는 3600RPM • 그러므로 AIR 속도가 달라짐-- 그래서 물방울이 그림에서 보는것 같이 OFF LINE에는 밑으로 20% 흐르고, ONLINE시에는 물이 날려서 60%선에 흐름. • OFF LINE 시 20% 선에서 70%물이 흐르고, ON LINE시에는 60% 선에서 55%의 물이 흐름. GE 7EA 의 경우임. 20-60% span Offline WW Online WW

  15. Typical Standard Nozzle Systems vs. GTE System • Standard System Nozzles • GTE System Nozzles

  16. Offline CWW Performance; Stage 2 Before & After GTE CWW Heavy coverage of soft deposits removed by Offline CWW

  17. Offline CWW Performance; Stage 17 Compressor Before & After CWW Heavy Crystalline deposits removed by Offline CWW

  18. GTE 400i-42 2xMS6001B CC GT output deterioration without online washing system Installation of new GTE-400 system • Results • +2.1% versus initial offline with detergent • 45 to 180 day offline cycle +3% availability • 52,000 hrs of service TD • Online water only wash Offline washes Outage + Offline wash Offline wash

  19. GTE 600i-110 6xMS9001E SC • Wash Benefits • ~8-12% Power Recovery • ~4-6% Heat Rate • TNB Fleet Standard • 2 more systems on 4 units

  20. GTE 1000i-110 3xMS7001E CC • Single System Serving 3 Engines • DCS Controlled / Scheduled • Online Water Only Wash • Improved Offline Cycle • From 30 to 75 days • +2% Availability • Additional Benefits: • >3% Power • >1.0 % Heat Rate

  21. Benefits Calculator- Power Gen Click on Blue Fields, and enter specific values, to use benefits calculator

  22. Water Wash Delivery- GTE1000i-95 • Specifications: • Stainless Steel Tank • Carbon Steel Skid - Painted • PLC Control • Fully Automated Online CWW • Positive Displacement Delivery Pump • Adjustable Discharge Pressure • Automated Heater Control & Protection • Automated Level Control & Protection • Discharge Fluid Filtration • Automated Detergent Injection • Adjustable Detergent Flow Control • User Interface Panel (HMI), touch-screen • Options: • Stainless Steel Skid • Electric Detergent Drum Pump • Total Dissolved Solids feedback & control • Remote Operation (Optional) • Data Logging (Optional)

  23. Developing Integrated and Service Solutions • Specifications: • Stainless Steel Tank • Stainless or Carbon Steel Skid • PLC Control • Fully Automated ON-Line CWW • Positive Displacement Delivery Pump • Adjustable Discharge Pressure • Automated Heater Control & Protection • Automated Level Control & Protection • Discharge Fluid Filtration • Options • Adjustable Detergent Flow Control • User Interface Panel (HMI), touch-screen • Electric Detergent Drum Pump • Total Dissolved Solids feedback & control • Automated Detergent Injection (Optional) • Remote Operation (Optional) • Data Logging (Optional) Water Wash

  24. GTE Fleet: > 800 Units; 20M Operating Hours

  25. Why GTE? Technology & Value Solutions • Boeing 747 • Fuel Savings $ 164 K • Wash Cost: ~ $ 36 K • Payback: ~ 3 Months • Additional Benefits • CO2 Reduced: 800 Tonnes • EGT Recovery:: ~ 9 o C • Time-on-Wing: + 4000 Hr • Foundation from Aviation/Jet Engines • In excess of 15000 Engine Washes • Major Air Carriers • Foreign and Domestic Military • Industrial Gas Turbine Water Wash • 800+ Unit Installed Base • 20 MM+ Operating Hours • Benefits • Power Recovery 2-3 % • Heat Rate Improvement 0.3 - 1 % • Availability Improvement 2 – 3 % • Payback ~ 3 - 6 Months

  26. Why GTE? Technology and Value Solutions • The GTE technology team is unique in experience, capability and breadth • The top 10 technology leaders have over 250 years experience in the energy industry and bring a wealth of systems physics knowledge, familiarity with advanced modeling tools, tough problem solving, practical, and hands-on field experience • GTE’s capabilities complement OEMs and are recognized as ‘expert’ in key product lines • GTE’s aero-modeling, controls and fluid systems integrated with manufacturing, supply chain, and life cycle cost elements -- positions us to develop advanced, cost effective solutions more rapidly • ‘Scientists’ with proven track records and practical tech application offers rapid design at low cost

  27. Proven Track Record with Blue Chip Clients Validated Results: • Track Record • > 800 Turbines • > 20MM Operating Hours • Long Term OEM Agreements • Siemens • Caterpillar / Solar • Rolls-Royce • Large Global OEMs

  28. Patented Water Wash Technology • Patent 5,868,860 Key Claims • Supply Pressure 50 to 80 bars • Mean Droplet range 120 to 250 microns • Key Design Features • Nozzle Selection to: • Produce Mean Droplet 120 to 250 microns • Avoid Droplets > 500 microns • Nozzle Placement Optimizes Wash Coverage • One position for both Online and Offline Wash • Wash Process Minimizes Water Volume • No Detergent, No Rinse for Online • Wash Process Minimizes Detergent Need for Offline • Reduction of Detergent Need by 80% for Offline

  29. Patented Methods & Wash Nozzle Placement • Patent 7,428,906 Key Claims • System for Wash during Operation • Method with mean drops less then 150 microns • Slip ratio of minimum 0.8 at compressor inlet • One or more Nozzles in acceleration duct • Key Design Features • Nozzle Selection & Discharge Pressure to: • Produce Mean Droplet less than 150 microns • Provide velocity at Nozzle Tip 40% of final at Compressor Inlet • Nozzle Placement Optimizes Wash Coverage • Injection relatively parrallel to air stream • Online Wash Process Claims • No Online Wetting of Stationary Components • Spray velocity 100-200 m/s

  30. Our Clients have the BEST Aviation & Industrial Turbines in the world. We make them PERFORM BETTER. Cleaner. More Output. More Reliable. More Available. More EFFICIENT.

More Related