280 likes | 389 Views
Explore PSTN fundamentals, VoIP technology, quality of service, and VoIP signaling protocols in this course. Learn the evolution from analog to digital communication, PCM encoding, PSTN signaling, network-to-network signaling, and PSTN services.
E N D
Voice Over IP Fundamentals BAI 613
Course Objectives • PSTN Fundamentals • Voice over IP Technology • Quality of Service • VoIP Signaling Protocols • Enterprise VoIP
The beginning of PSTN • The beginning of the PSTN • First voice transmission in 1876 • Used a ring-down circuit • Only one way • Bi-directional evolution • Required • Carbon microphone • Battery • Electromagnet • Iron diaphragm • Cable between each location • N x (N – 1)/2 • If 10 locations, 45 pairs of lines needed to run into calling location • Impractical • A central switch allowed location to location connection without multiple lines running to each location • Operated by human operators
PSTN Basics (1/15) • Analog and Digital Signaling • All sound that you hear is in analog form • Telephony networks originally based on analog infrastructure • Analog communication • Time and amplitude • Requires amplification over long distances • Susceptible to line noise • Amplifiers also amplified line noise • Known as cumulative noise • Digital communication • Based on 1’s and 0’s • Line noise less of an issue • Use repeaters to amplify • Repeaters clean signal to original condition (1 or 0) • When the benefits of this became evident, telephony migrated to PCM (Pulse Code Modulation)
PSTN Basics (2/15) • Digital Voice Signals • PCM most common encoding of analog signal to digital • PCM uses the Nyquist Theorem • Sampling at twice the highest frequency on a voice line results in good quality voice transmission. • PCM Process • Analog waveform filtered to remove anything greater than 4000 Hz. • Filtered signal is sampled at 8000 times per second • Converted to discrete digital form. • 8 bits * 8000 = 64,000 bits per second • Basis for the telephone infrastructure is 64Kbps • 2 PCM variations • u-law - America • a-law – Europe
PSTN Basics (3/15) • Loops, Trunks, and Interswitch Comms • Local Loop • Pair of copper wires running to the demark point (eg Your home, business, etc.) • Physically connects simple phone to the central office switch • Class 5 switch or end office switch • Trunk • Communication path between several central office switches • Interswitch Communications • Central office switches interconnect through trunks to tandem switches (class 4 switches) • Higher-layer tandem switches connect local tandem switches
PSTN Basics (5/15) • PSTN Signaling • User-to-network • When using twisted pair, a user connects to the PSTN via analog, ISDN, or T1 carrier • Most common method is Dual Tone Multi-Frequency (DTMF) • DTMF is in-band signaling
PSTN Basics (6/15) • User-to-Network (cont.) • ISDN • Out-of-band signaling • Uses a separate channel for signalling • B channel (bearer) • Voice, data, fax • D channel (data or control) • Signaling • Basic Rate Interface (BRI) • Two 64 Kbps B channels • One 16 Kbps D channel • Primary Rate Interface (PRI) • Twenty three 64 Kbps B channels • One 64 Kbps D channel
PSTN Basics (7/15) • Network-to-network Signaling • Usually carried via • T1/E1 over twisted pair • T1 is 1.544 Mbps, used in North America • E1 is 2.048 Mbps, used in Europe • T3/E3, T4 over coaxial cable • T3 carries 28 T1’s or 672 64 Kbps connections at 44.736 Mbps • E3 carries 16 E1’s or 512 64 Kbps connections at 35.368 Mbps • T4 carries 168 T1’s or 4032 64 Kbps connections at 274.176 Mbps • T3, T4 over microwave link • Synchronous Optical Network (SONET) across fiber • OC-3 – 155.52 Mbps • OC-12 – 622.08 Mbps • OC-48 – 2.488 Gbps
PSTN Basics (8/15) • Network-to-network (cont.) • Includes in-band signaling methods such as Multi-Frequency (MF) and Robbed Bit Signaling (RBS) • Signaling System 7 (SS7) is most common • Out-of-band • Reduced post-dialing delay • Increased call completion • Connection to the IN (Intelligent Network)
PSTN Basics (9/15) • PSTN Services and Applications • Common custom calling features • Call waiting • Call forwarding • Three-way calling • CLASS features (as a result of SS7) • Call display • Call blocking • Calling line ID blocking • Automatic callback • Call return (*69) • Inter-exchange features • Circuit-switched long distance • Calling cards • 800/888/877 numbers • VPNs • Private leased lines • Virtual cicuits (Frame Relay or ATM)
PSTN Basics (10/15) • PSTN Numbering Plans • ITU-T • International Numbering Plan • NANP • North American Numbering Plan • NPA-NXX-XXXX • NPA – Numbering Plan Area (area code) • NXX – Central Office Code • N is a value between 2-9 • X is a value between 0-9 • XXXX – Station Number • X is a value between 0-9 • Some places in the US and Canada require 1+10 digit calling for local calls
PSTN Basics (11/15) • Drivers Behind Convergence of Voice and Data • Drawbacks to PSTN • Data has taken over as primary traffic on many networks build for voice • PSTN cannot create and deploy features quickly enough • Data/Voice/Video (D/V/V) cannot converge on PSTN as currently built • Architecture built for voice not flexible enough to carry data • Packet Telephony Drivers • Circuit Switching model is breaking into an open standards layered model • Standards-Based Packet Infrastructure Layer • Open Call-control Layer • Open Service Application Layer
PSTN Basics (12/15) • Packet Telephony Drivers (cont.) • Standards-Based Packet Infrastructure Layer • Based on IP • RTP (Real-Time Transport Protocol) • UDP • Used for transporting real-time traffic • To date all VoIP signaling protocols utilize RTP/UDP/IP • Uses time stamps to determine when a packet is expected, if it was in order, or if it was received • Time stamping helps end stations tune settings to mask potential network problems such as delay, jitter, and packet loss. • Jitter – the variation of interpacket arrival time, or the difference when a packet is supposed to be received and when it is actually received. • Self-Healing • Traffic has multiple paths due to dynamic routing protocols
PSTN Basics (13/15) • Packet Telephony Drivers (cont.) • Open Call-Control Layer • The process of making a routing decision about where a call needs to go and making the call happen. • Similar to PSTN Call Signaling • VoIP call-control protocols • SIP • H.323 • MGCP • H.248/Megaco • Open Service Application Layer • Vendors can release APIs to the products to allow rapid development of applications. • E.g. Displaying stocks and weather information
PSTN Basics (14/15) • VoIP Call Control Protocols • H.323 • An ITU-T recommendation that specifies how multimedia traffic is carried over packet networks. • Complex protocol – not created for simple application development • Created to enable multimedia applications to run over unreliable networks • MGCP (Evolution from SGCP and IPDC) • SGCP and MGCP were developed to enable a central device (Media Gateway Controller) to control endpoints. • SIP • Described by RFC 3261 • Application-layer control protocol for creating, modifying, and terminating sessions with one or more participant
PSTN Basics (15/15) • VoIP Call Control Protocols (cont.) • H.248/MEGACO • Joint effort of IETC and ITU-T Study Group 16 • Exploded H.323’s gatekeeper model and removed signaling from the gateway, putting it in a media gateway controller (MGC)
Enterprise Telephony Today (1/2) • Similarities Between PSTN and ET • Circuit Switching • Common Infrastructure Model • Local Loop • Common Services • Differences between PSTN and ET • Signaling • PSTN uses signaling interfaces developed by industry bodies • PBX manufacturers use proprietary protocols to enable features on their equipment • Services Offered • ET requirements are much greater than typical residential users
Enterprise Telephony Today (2/2) • Common ET and PSTN Internetworking • ET must eventually interconnect with the PSTN • 5 common designs • Simple business line • Uses a line directly from the PSTN as a business line • PBX • A Private Branch Exchange provides many advanced features • Usually connects to the PSTN via a T1 or E1 cicuit • Key-System • Similar to a PBX, with less features • Used typically for 50 people or less • Centrex Line • Provided and managed by the LEC (Local Exchange Carrier) or CLEC (Competitive Local Exchange Carrier) • Virtual Private Networks • The PSTN contains a private dial plan for the business
Basic Telephony Signaling (1/4) • Direct Current Signaling • Relies on DC to signal the end switch or office • Toggles on or off the flow of DC • Uses two arrangements • Subscriber Loop • When subscriber goes off-hook, CD -48V flows across the line or loop between telephone and CO • When subscriber goes on-hook, the capacitor in the telephone blocks the flow of current • E & M (recEive and transMit) • Uses a form of DC signaling to indicate state changes on trunks or tie-lines
Basic Telephony Signaling (2/4) • In-Band and Out-of-Band Signaling • Single Frequency • Used for interoffice trunks • Has two states: • On-hook or idle • Off-hook or busy • Multi Frequency • Used by interoffice trunks to indicate events • Seizure • Release • Answer • Acknowledge • Transmit information such as calling party number • DTMF • Used to transmit telephone number digits from the subscriber to the local office
Basic Telephony Signaling (3/4) • Local-Start and Ground-Start Signaling • Loop-Start • Simplest and least intelligent • Works same way as the telephone and local end office • Initiates and closes a call by creating and closing a loop • Glare can occur • Two end points try to seize the line at the same time, resulting in two people being connected unknowingly • Ground-Start • Preferred method for PBX • Provides positive recognition of connects and disconnects • Current detection determines which end initiated a call • Reduces Glare
Basic Telephony Signaling (4/4) • Channel-Associated-Signaling (CAS) & Common-Channel Signaling (CCS) • CAS carries signaling info in the voice path itself • Robs a bit from the voice transmission channel (Robbed Bit Signaling) • CCS uses a separate signaling path • Faster and more flexible than CAS • Method used today is known as Signaling System 7 (SS7) or in Canada as CCS
PSTN Services (1/3) • POTS (Plain Old Telephone Service) • Standard Telephony Service • Dial Tone • Access to national and international carriers • 911 service • Custom calling features • Call waiting, call forwarding, etc. • Voice mail • Custom Local Area Signaling Service (CLASS) • Call trace • Auto-callback • Caller ID • Call number blocking
PSTN Services (2/3) • Business Services • Virtual Private Voice Networks • Alternative to Tie Lines • Centrex Services • The Telco contains, maintains, and managing the equipment and all the services • Provides many features found in PBX • Less expensive than maintaining own PBX for small company • Call Center Services • Automatic call distribution (ACD) • Service Provider Services • Database Services • 800 number services • 900 number services • Calling Card services • Authorization services
PSTN Services (3/3) • Service Provider Services (cont.) • Operator Services • Toll and Assistance • Directory Assistance • Billing Services
Reading • Chapter 1 • Chapter 2 • Chapter 3 • Exclude detailed E&M Signaling • Page 50 – 54 • Exclude Page 55-77 • Chapter 5