250 likes | 325 Views
Learn about the selection sort method for sorting arrays by finding the smallest items and placing them in the correct order through swapping.
E N D
Selection Sort • Another way of sorting is the selection sort • The main idea is to keep finding the smallest (and next smallest) items in the array • And move them into correct position (swap)
Selection Sort data small_pos smallest n 0 45 0 k 45 < smallest? F 0
Selection Sort data small_pos smallest n 0 45 1 k 32 < smallest? T 0
Selection Sort data small_pos smallest n 1 32 1 k 32 < smallest? T 0
Selection Sort data small_pos smallest n 1 32 2 k 56 < smallest? F 0
Selection Sort data small_pos smallest n 1 32 3 k 9 < smallest? T 0
Selection Sort data small_pos smallest n 3 9 3 k 9 < smallest? T 0
Selection Sort data small_pos smallest n 3 9 4 k 21 < smallest? F 0
Selection Sort data small_pos smallest n 3 9 5 k 77 < smallest? F 0
Selection Sort data small_pos smallest n 3 9 6 k 17 < smallest? F 0
Selection Sort—SWAP! data small_pos smallest n 3 9 6 k Swap(data[k], data[small_pos]); 0
Selection Sort data small_pos smallest n 1 32 1 k 32 < smallest? F 1
Selection Sort data small_pos smallest n 1 32 2 k 32 < smallest? F 1
Selection Sort data small_pos smallest n 1 32 3 k 45 < smallest? F 1
Selection Sort data small_pos smallest n 1 32 4 k 21 < smallest? T 1
Selection Sort data small_pos smallest n 4 21 4 k 21 < smallest? T 1
Selection Sort data small_pos smallest n 4 21 5 k 77 < smallest? F 1
Selection Sort data small_pos smallest n 4 21 6 k 18 < smallest? T 1
Selection Sort data small_pos smallest n 6 18 6 k 18 < smallest? T 1
Selection Sort data small_pos smallest n 6 18 7 k 17 < smallest? T 1
Selection Sort data small_pos smallest n 7 17 7 k 17 < smallest? T 1
Selection Sort—SWAP! data small_pos smallest n 7 17 7 k Swap(data[k], data[small_pos]); 1
Selection Sort—and so on data small_pos smallest n 2 56 2 k 56 < smallest? F 2