Astronomy 1 – Fall 2014 - PowerPoint PPT Presentation

astronomy 1 fall 2014 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Astronomy 1 – Fall 2014 PowerPoint Presentation
Download Presentation
Astronomy 1 – Fall 2014

play fullscreen
1 / 75
Astronomy 1 – Fall 2014
229 Views
Download Presentation
nayda-hines
Download Presentation

Astronomy 1 – Fall 2014

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Astronomy 1 – Fall 2014 CLM - Fall 2014 Lecture 3; October 9, 2014

  2. Constellations & Celestial Coordinates Seasons Lunar Phases: How do they arise? Length of the Month: How long does it take for the moon to go around the Earth? The Moon’s Orbit: Why don’t we have lunar eclipses every month? Solar eclipses What kind of solar eclipses are there? When do they happen? Previously on Astro-1 CLM - Fall 2014

  3. Today on Astro-1 • The motion of planets • Geocentric Models • Evidence for a heliocentric solar system • Newton’s laws of dynamics • Newtonian gravity • The motion of planets explained by Newton’s gravity • Tides CLM - Fall 2014

  4. The ancient Greek (wrong) notion of planetary motion CLM - Fall 2014

  5. But sometimes the motion of planets is “retrograde” Can’t explain this with simple “perfect” circular motion of the planets CLM - Fall 2014

  6. The Geocentric explanation of retrograde motion: circles within circles – epicycles. CLM - Fall 2014

  7. CLM - Fall 2014

  8. CLM - Fall 2014

  9. Copernican Revolution CLM - Fall 2014

  10. Nicolaus Copernicus (1473–1543): revolutionized our understanding of our place in the universe by introducing the heliocentric (sun-centered) model of the solar system. Aristarchus suggested a heliocentric model in the 3rd century BC, but it didn’t catch on. De Revolutionibus was published in 1543, but he had been circulating the ideas for 30 years. CLM - Fall 2014

  11. CLM - Fall 2014 Heliocentric explanation of retrograde motion

  12. Question 3.1 (iclickers!) • Retrograde motion of a planet when viewed from Earth is caused by • A) The relative motions of Sun and planet • B) Its elliptical orbit path • C) The relative motion of Earth and planet • D) The inclination of its orbit to the ecliptic plane CLM - Fall 2014

  13. Maximum greatest elongation for Venus is 45°, and for Mercury 28°, so they can never be farther than that from the sun. CLM - Fall 2014

  14. Question: You see a very bright planet at midnight (you know it is a planet, because planets don’t twinkle like stars do). Is it Venus? Answer: Venus can never be farther than 45° from the sun. Since there are 360° in the sky, and it rotates in 24h, the celestial sphere rotates at 360°/24h=15°/hr. If Venus is at greatest eastern elongation, it will set 45°/(15°/hr) = 3hr after sunset. So it can’t be seen at midnight. CLM - Fall 2014

  15. Question 3.2 (iclickers!) • Copernicus used the fact that Mars can sometimes be seen high in our sky at midnight to conclude that • A) Earth can come between Mars and the Sun • B) Mars and the Sun can never be on the same side of Earth at the same time • C) Mars can come between Earth and the Sun • D) The Sun can come between Earth and Mars CLM - Fall 2014

  16. Tycho Brahe (1546–1601) Here shown at Uraniborg, one of the two observatories that he built under the patronage of Frederik II of Denmark (though the telescope had not yet been invented). Kepler later used Tycho’s exquisite measurements. CLM - Fall 2014

  17. From Tycho’s Stella Nova CLM - Fall 2014

  18. Parallax: Tycho Brahe argued that if an object is near the Earth, an observer would have to look in different directions to see that object over the course of a night and its position relative to the background stars would change. Tycho failed to measure such changes for a supernova in 1572 and a comet in 1577, and concluded that these objects were far from the Earth. CLM - Fall 2014

  19. Astronomy picture of the day CLM - Fall 2014

  20. Kepler’sLaws CLM - Fall 2014

  21. Johannes Kepler (1571–1630) By analyzing Tycho Brahe’s detailed records of planetary positions, Kepler developed three general principles, called Kepler’s laws, that describe how the planets move about the Sun. Kepler was the first to realize that the orbits of the planets are ellipses and not circles. CLM - Fall 2014

  22. CLM - Fall 2014

  23. Kepler’s first law: The orbit of a planet about the Sun is an ellipse with the sun at one focus. CLM - Fall 2014

  24. Kepler’s second law: A line joining a planet and the Sun sweeps out equal areas in equal intervals of time. CLM - Fall 2014

  25. CLM - Fall 2014

  26. Significance of Kepler’s Laws: Could describe the motions of the planets more accurately than any scheme before. Simpler than epicycles (so satisfies Occam’s Razor). Helped to justify the heliocentric model. CLM - Fall 2014

  27. Question 3.3 (iclickers!) • Which of the following statements is true according to Kepler’s third law? • A) The smaller the orbit, the longer it takes for the planet to complete one revolution • B) The smaller the radius of a planet the more rapidly it rotates on its axis • C) The larger the orbit the longer it takes for the planet to complete one revolution • D) The time to complete one revolution of its orbit depends on the size or radius of the planet CLM - Fall 2014

  28. Testing Models CLM - Fall 2014

  29. Galileo Galilei (1564–1642) Galileo was one of the first people to use a telescope to observe the heavens. He discovered craters on the Moon, sunspots on the Sun, the phases of Venus, and four moons orbiting Jupiter. His observations strongly suggested that the Earth orbits the Sun, not vice versa. CLM - Fall 2014

  30. Numbers are angular size of Venus in arcsec, but mistakenly labeled as degrees in figure. CLM - Fall 2014

  31. CLM - Fall 2014

  32. CLM - Fall 2014

  33. Early Observations of Jupiter’s Moons In 1610 Galileo discovered four “stars” that move back and forth across Jupiter from one night to the next. He concluded that these are four moons that orbit Jupiter, much as our Moon orbits the Earth. This drawing shows notations made by Jesuit observers on successive nights in 1620. The circle represents Jupiter and the stars its moons. CLM - Fall 2014

  34. Arguments favoring Heliocentrism over Geocentrism • Observations: • Phases of Venus • Stellar Parallax • Against specific feature of Ptolemy’s model • Moons of Jupiter • Sun spots • Moon spots • Occam’s razor: simpler explanations of phenomena are more likely to be correct. (“Razor” refers to shaving extraneous details from an argument) CLM - Fall 2014

  35. Question 4.5 (iclickers!) • The one significant observation Galileo made through his home-built telescope that convinced him that the planets revolved around the Sun was • A) the appearance of the Milky Way as a mass of individual stars • B) The discovery of rings around the planet Saturn • C) The appearance of mountains and craters on the Moon • D) That the appearance of Venus followed a cycle of phases, from crescent through quarter and gibbous phases to full phase CLM - Fall 2014

  36. Isaac Newton (1642–1727) The most influential scientist in history. Described gravity, explained Kepler’s Laws, established that the laws of physics on earth extend up into the heavens, established laws regarding the conservation of momentum, invented calculus, split light into a spectrum, invented the reflecting telescope, made many mathematical advances. Epitaph by Alexander Pope: Nature and nature's laws lay hid in night; God said "Let Newton be" and all was light. Newton in a letter to Robert Hooke: “If I have seen further it is by standing on the shoulders of giants” CLM - Fall 2014

  37. Newton’s First Law An object remains at rest or moves in a straight line at a constant speed unless acted upon by a net outside force. (Inertia) Example: Voyager 1 -- launched in 1977, it is now on its way out of the solar system, forever traveling in a straight line (unless it encounters something). CLM - Fall 2014

  38. Level Air Track ExperimentQuestion 3.4 (iclicker) • What will happen to the cart when the professor turns the air off? • Car will stop suddenly. • Car will slowly come to a stop. • Car will slowly speed up. • Car will rapidly speed up. • Car will continue to move at a constant speed along the track. CLM - Fall 2014

  39. Newton’s Second Law F = ma F = net outside force on a object m = mass of object a = acceleration of object a=F/m – it requires more force to accelerate more massive objects Or If you push two objects of different masses with the same force, the less massive object will accelerate more CLM - Fall 2014

  40. Skateboard ExperimentQuestion 3.5 (iclicker) • When the skateboarders push off, who will accelerate more? • Their accelerations are equal • The more massive person • The less massive person. • Neither person will move • It is impossible to predict with certainty. CLM - Fall 2014

  41. Newton’s Third Law Whenever one object exerts a force on a second object, the second object exerts and equal and opposite force on the first object. CLM - Fall 2014

  42. Skateboard ExperimentQuestion 3.6 (iclicker) • When the less massive person pulls on the rope what will happen? • Both people move inwards toward the center of mass. • The less massive person is pulled towards the more massive person. • The more massive person is pulled towards the less massive person. • The distance between the skateboarders increases due to Newton’s third law.. • Neither person will move

  43. Newtonian Gravity CLM - Fall 2014

  44. CLM - Fall 2014

  45. The Law of Universal Gravitation Two objects attract each other with a force that is directly proportional to the mass of each object and inversely proportional to the square of the distance between them. F=Gm1m2/R2 F = gravitational force between two objects m1 = mass of first object m2 = mass of second object r = distance between objects G = universal constant of gravitation G = 6.67×10-11 newtonm2/kg2 CLM - Fall 2014

  46. Difference between weight and mass • Mass describes how much matter is in an object (measured in kg) • Weight is a force that describes how gravity affects a mass (measured in Newtons: 1 N = 1 kg m /s2) • 1 Kg on the surface of the Earth weighs 9.8 N CLM - Fall 2014

  47. Question 3.7 (iclickers!) • If you were to be on the Moon, which of your physical properties would be altered noticeably? • A) Weight • B) Height • C) Mass • D) Volume CLM - Fall 2014

  48. F = gravitational force between two objects m1 = mass of first object m2 = mass of second object r = distance between objects G = universal constant of gravitation G = 6.67×10-11 newtonm2/kg2 F=Gm1m2/R2 Example: If the Earth were the same mass, but twice the radius, what would a 100 kg person weigh? me=5.97×1024 kg mp=100 kg r = 2 × radus of Earth = 2×6.38×106 m = 1.28×107m F = 245 Newtons = ¼ 980 Newtons CLM - Fall 2014

  49. The fall of bodies in a gravitational field does not depend on their mass CLM - Fall 2014

  50. Professor’s DinnerQuestion 3.8 (iclicker) • Why doesn’t her dinner fall on the ground?. • Objects at rest stay at rest unless acted upon by a net outside force. • The tablecloth was removed very quickly, so the force of friction did not last long. • The acceleration occurred over such a brief period, that the table setting did not reach a velocity much larger than zero • All of the above. • None of the above. Gravity keeps the objects on the table regardless of the speed of the pull. CLM - Fall 2014