Everyday Math

1 / 12

# Everyday Math - PowerPoint PPT Presentation

Everyday Math. 5 th Grade: Unit One . Unit One Vocabulary. Rectangular array: an arrangement of objects in rows and columns. Each row has the same number of objects and each column has the same number of objects.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Everyday Math' - nay

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

### Everyday Math

Unit One Vocabulary
• Rectangular array: an arrangement of objects in rows and columns. Each row has the same number of objects and each column has the same number of objects.
• Factors – numbers that you multiply together to get a product
• Factor pair – two numbers that you multiply together to get a product.
• Product – the answer you get when you multiply factors together
• Divisibility - A number is divisible by another number if it goes in evenly (no remainder)
• Composite number – a number that has more than 2 factors
• Prime number – a number that has exactly 2 factors (1 and itself)
• Square number – a number that makes a square array (2x2, 4x4, 5x5, etc.)
• Exponential notation - numbers written with exponents
• Exponent - a small number written to the right and above the base number to show how many times the base number is multiplied by itself.
• Square root – when you “unsquare” a square number. (example: The square root of 36 is 6 (6x6 =36))
• Prime factorization - writing a number as a product of all prime numbers
Divisibility tests
• Divisible by 2
• A number is divisible by 2 if the last digit (number in the one’s place ) is even or 0
• (2, 4, 6, 8, 0)
• 346 715Χ
• Divisible by 5
• A number is divisible by 5 if the last digit is 5 or 0
• 450 735 569Χ
• Divisible by 10
• A number is divisible by 10 if the last digit is 0
• 230  455Χ
Divisibility tests continued…
• Divisible by 3
• Add up all the digits in the number. If the sum is divisible by 3, so is the whole number.
• 246  451 Χ
• (2+4+6=12) (4+5+1=10)
• 12 is divisible by 3, so is 246 10 is not divisible by 3, neither is 451
• Divisible by 4
• Look at the last two digits of a number. If the number that the two digits form is divisible by 4, so is the whole number.
• 2,232  7,311 Χ
• 32 is divisible by 4, so is 2,232 11 is not divisible by 4, neither is 7,311
Divisibility tests continued …
• Divisible by 6
• A number is divisible by 6 only if it is both divisible by 2 and 3.
•  741 Χ
• Divisible by both 2 &3 Divisible by 3, but not 2
• Divisible by 9
• Add up all the digits in the number. If the sum is divisible by 9, so is the whole number.
• 846 451 Χ
• (8+4+6=18) (4+5+1=10)
• 18 is divisible by 9, so is 846 10 is not divisible by 9, neither is 451

Composite numbers – numbers that have more than 2 factors

Finding all of the factors for a number:

Step 1: Always begin with the number one.

1 x 24 = 24

Step 2: move on to the number two.

2 x 12 = 24

Step 3: continue on until you start repeating

numbers.

(the next number to check after 4 is 5. 5 doesn’t go into 24 and

so you move on to 6. 6 has already been used so you know

you have found all of your factors.)

• Step 1: Divide number into a any factor pair.
• Step 2: Circle any number that can't be broken
• down any more (prime).
• Step 3: Continue to break down numbers until
• you are left with all prime numbers.
• Step 4: Connect all prime numbers with
• x symbols from least to greatest. 3 x 3 x 5
• If possible, write your answer in exponential notation 3² x 5
• Check: What is 3 x 3 x 5 (or 3² x 5) ?
Sources:
• -EverdyayMath Student reference book
• -Some examples taken from: Mr.Wrinkle.net/unit1