Introduction to Basic Laboratory Techniques

1 / 19

# Introduction to Basic Laboratory Techniques - PowerPoint PPT Presentation

Introduction to Basic Laboratory Techniques. Measurement Means by which numerical information or data is obtained. The information should be conveyed through calculations, analysis and conclusion. Precision Describes the amount of information in a measurement.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Introduction to Basic Laboratory Techniques' - morley

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Introduction to Basic Laboratory Techniques
• Measurement
• Means by which numerical information or data is obtained.
• The information should be conveyed through calculations, analysis and conclusion.
• Precision
• Describes the amount of information in a measurement.
Precision…
• The measuring instrument must always be examined and the smallest values of the scale must be determined.
• The measurement should include all the numbers from the instrument and an additional digit, which is an estimate to the nearest tenth of the smallest division.
Significant Figures and Rounding
• Figures that contain meaningful information in view of the error or uncertainty involved.
• More the number of significant figures, better the precision is.
Significant Figure Rules
• Non-zero digits are always significant.
• Any zeros between two significant digits are significant.
• A final zero or trailing zeros in the decimal portion ONLY are significant.
Rounding…
• If it is less than 5, drop it and all the figures right of it.
• If it is more than 5, increase by 1 the number to be rounded, that is, the preceeding figure.
• If it is 5, round the number so that it will be even.
• Count the number of significant figures in the decimal portion of each number in the problem.
• Add or subtract in the normal fashion.
• Round the answer to the LEAST number of places in the decimal portion of any number in the problem.
Multiplication or Division
• The LEAST number of significant figures in any number of the problem determines the number of significant figures in the answer.
• This means you MUST know how to recognize significant figures in order to use this rule.
Metric System
• The first standardized system of measurement, based on the decimal was proposed in France about 1670. However, it was not until 1791 that such a system was developed.
• It was called the "metric" system, based on the French word for measure.
• The modern metric system has been renamed Systeme International d'Unites (International System of Units) and is denoted by the letters SI.
Metric System…
• There are three major parts to the metric system: the seven base units, the prefixes and units built up from the base units.
• Three major parts:
• Physical Quantity ; Name of SI unit; Symbol for SI unit.
Metric System…
• Here is a list of the base units which make up the metric system:

length meter m

mass kilogram kg

time second s

current Ampere A

temperature Kelvin K

Amount of substance mole mol

luminous intensity candela cd

Metric System…Prefixes

Prefix Symbol Numerical Exponential

giga G 1,000,000,000 109

mega M 1,000,000 106

kilo k 1,000 103

hecto h 100 102

deca da 10 101

No prefix means 1, i.e. 100

Metric Systems… Prefixes

Prefix Symbol Numerical Exponential

deci d 0.1 10-1

centi c 0.01 10-2

milli m 0.001 10-3

micro  0.000001 10-6

nano n 0.000000001 10-9

Conversionyou need to know…
• memorize the metric prefixes names and symbols.
• determine which of two prefixes represents a larger amount.
• determine the exponential "distance" between two prefixes.
• significant figure rules.
Powers of Ten and Scientific Notation
• In astronomy, one encounters numbers that are often too large or too small.
• Power of ten notation is convenient format by which one may easily express values may times larger or smaller.
• Scientific notation also helps us to easily write values many times larger or smaller.
Power of Ten Notation
• The notation is symbolically shown as 10n.
• 10 is the base and n is an integer and is the power of exponent to which is base is raised.
• If the exponent is positive:
• 103 = 10x10x10
• If the exponent is negative:
• 10-3 = 1/(10x10x10)=0.001
• Whenever the exponent is negative, the number or zeros to left of the 1 is one less than the absolute value of the exponent.
Scientific Notation
• It is symbolically shown as a.bc x 10n.
• Where a.bc decimal between 1 and 10 and n is an integer, denoting the power of 10.
• Average distance between earth to the sun is 93,000,000 miles. To convert:
• Move the decimal point to the left until the number you get is between 1 and 10.
• 9.3 x 107 miles.
Scientific Notation…
• For numbers less than 1:
• # 0.0000013 cm.
• To convert this into Scientific Notation:
• Move the decimal point to the right until you obtain a value between 1 and 10.
• The absolute value of the exponent n is again equals the number of places the decimal point is moved.
• The converted number is 1.3 x 10-6 cm.
Arithmetic Operation with Scientific Notation