300 likes | 308 Views
This chapter review covers vocabulary and notation, angles formed by parallel lines and transversals, proving lines are parallel, theorems about perpendicular lines, and more.
E N D
Chapter 3 Review 3.1: Vocabulary and Notation 3.2: Angles Formed by Parallel Lines and Transversals 3.3: Proving Lines are Parallel 3.4: Theorems about Perpendicular Lines
2 1 > 4 3 7 8 > 6 5 Name a pair of vertical angles. 6 and 8 5 and 7 2 and 3 1 and 4
2 1 > 4 3 7 8 > 6 5 Name a pair of alternate interior angles. 3 and 7 4 and 8
2 1 > 4 3 7 8 > 6 5 Name a pair of alternate exterior angles. 2 and 5 1 and 6
2 1 > 4 3 7 8 > 6 5 Name a linear pair of angles. 1 and 3 7 and 8 7 and 6 1 and 2 2 and 4 3 and 4 5 and 6 5 and 8
r 2 1 > 4 3 m 7 8 > 6 5 n Name a pair of parallel lines.How do you know they are parallel?Name the transversal. m || n arrows r
2 1 > 4 3 7 8 > 6 5 Name a pair of corresponding angles. 2 and 7 1 and 8 3 and 5 4 and 6
x y Describe the relationship between the lines using both words and math notation. Perpendicular; x y
> x > y Describe the relationship between the lines using both words and math notation. Parallel; x || y
R T Q U V S P W Name a pair of perpendicular segments.
R T Q U V S P W Name a pair of skew segments. Examples:
R T Q U V S P W Name a pair of parallel segments.
R T Q U V S P W Name a pair of parallel planes.
r 2 1 > 4 3 m 7 8 > 6 5 n Write an equation that describes the relationship between the given angles. State the theorem or postulate that justifies your equation. Same-side interior angle theorem
r 2 1 > 4 3 m 7 8 > 6 5 n Write an equation that describes the relationship between the given angles. State the theorem or postulate that justifies your equation. Corresponding Angles Postulate
r 2 1 > 4 3 m 7 8 > 6 5 n Write an equation that describes the relationship between the given angles. State the theorem or postulate that justifies your equation. Linear Pair Theorem
r 2 1 > 4 3 m 7 8 > 6 5 n Write an equation that describes the relationship between the given angles. State the theorem or postulate that justifies your equation. Alternate Interior Angles Theorem
r 2 1 > 4 3 m 7 8 > 6 5 n Write an equation that describes the relationship between the given angles. State the theorem or postulate that justifies your equation. Alternate Exterior Angles Theorem
r 2 1 4 3 m 7 8 6 5 n If 4 6, why is ? Converse of the Corresponding Angles Theorem
r 2 1 4 3 m 7 8 6 5 n If 3 7, why is ? Converse of the alternate interior angles theorem
r 2 1 4 3 m 7 8 6 5 n If 2 5, why is ? Converse of the alternate exterior angles theorem
r 2 1 4 3 m 7 8 6 5 n If 4 and 7 are supplementary, why is ? Converse of the same-side interior angles theorem
r 2 1 4 3 m 7 8 6 5 n Find the value of x that would guarantee m || n.
r 2 1 4 3 m 7 8 6 5 n Find the value of x that would guarantee m || n.
x 10 What do you know about x? Why? x>10: The shortest distance between a point not on a line and the line is the segment perpendicular to the segment.
14 What do you know about x? Why?
Is this a perpendicular bisector? Why or why not? No. We don’t know that the segment has been bisected or the angles formed are right angles– no markings!
Is this a perpendicular bisector? Why or why not? No. You can’t bisect a line– only a segment.
Is this a perpendicular bisector? Why or why not? Yes. The SEGMENT has been cut in half and the figures intersect at 90°.
1 h 2 3 p 1 3 Vertical angles theorem Transitive Property of