150 likes | 248 Views
Generate an initial design for a state machine to accept the pattern (11+010)*(111). Begin by creating an unreduced state table with nulls, then proceed to remove nulls, convert to deterministic, and rename states following specific rules. The final minimized machine is detailed, highlighting transitions and a black hole state. Our machine is tailored for the specified pattern.
E N D
Machine to Accept • (11+010)*(111)+
Initial Design C H 1 1 1 λ G A λ D 0 1 1 0 E F 1 B
0 1 λ -> A B C D B E C A D F E A F G G H H D * State Table
Complete Nulls • Nothing to do in this example
0 0 1 1 λ -> -> A A B B C CF D B B E E C C A A D D F F E E A A F F G G G G H H H H F D * * Remove nulls
0 1 =0 0 1 =1 -> a b c 0 0 0 0 b d e 0 0 0 0 c d f 0 0 0 0 d d d 0 0 0 0 e a d 0 0 0 0 f b g 0 0 1 1 g d h 1 0 0 2 h b i 0 0 1 1 i d j 1 0 1 3 j b i 1 0 1 3 0 & 1 - equivalence
0 1 =1 0 1 =2 -> a b c 0 0 0 0 b d e 0 0 0 0 c d f 0 0 1 1 d d d 0 0 0 0 e a d 0 0 0 0 f b g 1 0 2 2 g d h 2 0 1 3 h b i 1 0 3 4 i d j 3 0 3 5 j b i 3 0 3 5 1 & 2 -equivalence
0 1 =2 0 1 =3 -> a b c 0 0 1 0 b d e 0 0 0 1 c d f 1 0 2 2 d d d 0 0 0 1 e a d 0 0 0 1 f b g 2 0 3 3 g d h 3 0 4 4 h b i 4 0 5 5 i d j 5 0 5 6 j b i 5 0 5 6 2 & 3 - equivalence
0 1 =5 0 1 =6 -> a b c 0 1 2 0 b d e 1 3 4 1 c d f 2 3 5 2 d d d 3 3 3 3 e a d 4 0 3 4 f b g 5 1 6 5 g d h 6 3 7 6 h b i 7 1 8 7 i d j 8 3 9 8 j b i 9 1 8 9 5 & 6 - equivalence
State 0 1 -> 0 1 2 1 3 4 2 3 5 3 3 3 4 0 3 5 1 6 6 3 7 * 7 1 8 8 3 9 * 9 1 8 * Minimized machine
1 2 5 1 1 6 1 0 0 0 7 0 0 1 1 1 4 8 1 0 3 black hole 9 1 Our machine for (11+010)*(111)+