Glass and thermal insulation 2008 - PowerPoint PPT Presentation

slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Glass and thermal insulation 2008 PowerPoint Presentation
Download Presentation
Glass and thermal insulation 2008

play fullscreen
1 / 78
Glass and thermal insulation 2008
245 Views
Download Presentation
mirit
Download Presentation

Glass and thermal insulation 2008

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Glass and thermal insulation 2008 Technical Advisory Service

  2. Thermal Insulation Acoustic Insulation Solar Control Safety Aesthetic and decoration

  3. Glass and thermal insulation • Introduction • Convection, conduction and radiancy • Single glazing • Double glazing • Low e double glazing • Temperature of surface and comfort • AGC Flat Glass Europe range • Condensation • Calculation of the Ug-value of a glazing • Calculation of the Uw-value of a window • Regulation

  4. Introduction Heat high t° low t°

  5. Introduction 20°C Necessary power ? 0°C P = S (m²) x DT (°C) x Ug (W/m² °C)

  6. Glass and thermal insulation • Introduction • Convection, conduction and radiancy • Single glazing • Double glazing • Low e double glazing • Temperature of surface and comfort • AGC range • Condensation • Calculation of the Ug-value of a glazing • Calculation of the Uw-value of a window • Regulation

  7. Conduction, convection and radiancy Conduction Convection Radiancy

  8. Conduction, convection and radiancy Heat loss Ug-value = (W/m².K) Temperature difference Outdoor temperature : Tout Indoor temperature : Tin Radiation Radiation Conduction Convection (and conduction) Convection (and conduction)

  9. Conduction, convection and radiancy Energy UV Light Short infra red Intensity(W/m²) 1.5 1.0 0.5 0 2500 280 380 780 0 Wavelength (nm)

  10. Conduction, convection and radiancy Solar spectrum : UV : 280 tot 380 nm 5% energy Light : 380 tot 780 nm 50% energy Short I.R. : 780 tot 2500 nm 45% energy

  11. Conduction, convection and radiancy Solar radiancy Radiators Close IR Radio waves Visible Long IR

  12. Glass and thermal insulation • Introduction • Convection, conduction and radiancy • Single glazing • Double glazing • Low e double glazing • Temperature of surface and comfort • AGC range • Condensation • Calculation of the Ug-value of a glazing • Calculation of the Uw-value of a window Regulation

  13. Single glazing 4 glass = 1 W/(m K) alu = 160 W/(m K) insulating material  0,065 W/(m K) : thermal conductivity

  14. Single glazing 19 mm Ug = 5,4 W/(m² K) 4 glass = 1 W/(m² K) insulator < 0,065 W/(m² K) Ug = 5,8 W/(m² K)

  15. Single glazing 5,8 5,4

  16. Single glazing 700 mm Ug = 1.1 W/(m² K)

  17. Glass and thermal insulation • Introduction • Convection, conduction and radiancy • Single glazing • Double glazing • High output double glazing • Temperature of surface and comfort • AGC range • Condensation • Calculation of the Ug-value of a glazing • Calculation of the Uw-value of a window • Regulation

  18. Double glazing glass = 1 W/(m² K) air = 0,025 W/(m² K) Ug = 5,8 W/(m² K) Ug = 2,9 W/(m² K)

  19. Double glazing 2,9

  20. Double glazing - composition Thermobel Air Float Float Butyl Spacer Dryer Sealing

  21. Double glazing - composition • 2 glazings • Spacer • Gas • Dryer for absorbing humidity • Primary barrier of sealing (humidity) : • Butyl • Secondary barrier of sealing (sealing) : • Polyurethane • Silicone

  22. Double glazing Ar Kr Ug = 2,9 W/(m² K) Ug  2,6 W/(m² K)

  23. Double glazing

  24. Double glazing Ug = 2,9 W/(m² K) Ug  2,0 W/(m² K)

  25. Glass and thermal insulation • Introduction • Convection, conduction and radiancy • Single glazing • Double glazing • Low edouble glazing • Temperature of surface and comfort • AGC range • Condensation • Calculation of the Ug-value of a glazing • Calculation of the Uw-value of a window • Regulation

  26. Double glazing Outside Inside UV, visible, short IR Long IR > 2500 nm

  27. Double glazing Long IR > 2500 nm en=0.89 en =0.89

  28. Double glazing • Glass is not transparent to long IR • Glass then absorbs the heat which tries to leave the building • In winter, when it is colder outside than inside, the major part ofthis absorptive energy is re-emitted towards outside

  29. Low e double glazing Heat LowE coating Ug = 2,9 W/(m² K) Ug = 1,4 to 2,0 W/(m² K)

  30. Low e double glazing Low emissivity coating : n=0.15 to 0.02 Long IR > 2500 nm en =0.89

  31. Low e double glazing UV, visible, short IR Long IR > 2500 nm en =0.89

  32. Low e double glazing • The low-e coating forces the reemission of the absorbed heat by glass towards the interior • I.e. that it behaves as a mirror which reflects the heat which tries to leave the building • On the other hand, it does not prevent the solar radiation frompenetrating in the building

  33. Low e double glazing • Physically : • Glass is opaque to long IR (ET = 0) • From where the result of a heating of glass and reemission • The low-e coating forces the reeimisson towards outside • = AE = 1 – TR – RE = 1 – RE • The lower is emissivity, the higher is the energy reemission towards the interior

  34. Low e double glazing Clear glazing : emissivity e = 0,89 Coatings : • pyrolithic low-e: e about 0,15 to 0,30 • Vacuum(magnetron): e about 0,02 à 0,1

  35. Low e double glazing e = 0,89 e = 0,15 e = 0,05

  36. Double glazing with Warm Edge spacer The metallic spacer (alu, steel, …) is replaced by a plastic spacer (eventually reinforced).

  37. Double glazing with Warm Edge spacer Advantages: • Improvement of the U-value of the frame (not the glazing)  economy of energy • The surface temperature is more uniform  better comfort Without Warm Egde With Warm Edge

  38. Low e double glazing In short : • Thickness of glass : insignificant • Gas (argon): small improvement • Low emissivity coatings  Big improvement Low e double glazing • Warm-Edge spacer  Improvement of the insulation of the frame

  39. Double glazing Ar Ug = 5,8 W/(m² K) Ug = 2,9 W/(m² K) Ug from 1,4 to 2,0 W/(m² K) Ug = 1,1W/(m² K) In short :

  40. Triple glazing Ar Kr Ar Kr Ug from 0,5 to 0,9 W/(m² K)

  41. Thermal losses of a dwelling... Roof : 20% Walls : 25% Ground : 20% Windows account for about 35% !

  42. Glass and thermal insulation • Introduction • Convection, conduction and radiancy • Single glazing • Double glazing • Low e double glazing • Temperature of surface and comfort • AGC range • Condensation • Calculation of the Ug-value of a glazing • Calculation of the Uw-value of a window • Regulation

  43. Temperature of surface and comfort 20° 18,5° 17,3° 12,8° 5,6° 0° Thermobel Triple 4-15 ar-4 -15 ar-4Ug = 0,6 Planibel 4 mm Ug =5,8 Thermobel 4-12-4 mm Ug = 2,9 Thermobel Top N+ 4-15 ar-4 mm Ug = 1,1 Inside Outside

  44. Glass and thermal insulation • Introduction • Convection, conduction and radiancy • Single glazing • Double glazing • Low e double glazing • Temperature of surface and comfort • AGC range • Condensation • Calculation of the Ug-value of a glazing • Calculation of the Uw-value of a window • Regulation

  45. 1970 1980 1990 2000 1970 1980 1990 2000 Technology Dial Sputtering Lodelinsart Magnetron sputtering Lodelinsart / Tiel / Teplice Pyrolytic (Spray) Moustier Pyrolytic (CVD) Moustier Gold Thermoplus Single silver Thermobel (Plus, Top, Top N, Energy) Top N+, Top NT, Energy N Thermoplus Comfort K Glass Planibel G

  46. AGC range – low-e coatings

  47. AGC range – Thermobel • Ug = 2,8 W/m²K • LT = 81 % - SF = 77 % • Dimensions max : 3210 mm x 6000 mm • Thicknesses : 4 to 19 mm • Processings : tempering, laminating, silk screening, bending

  48. AGC range – Thermobel Alternatives • Thermobel cross bars • Thermobel luxaclair

  49. AGC range – Thermobel Top N+ • LT = 78 % - SF = 60 % • Top N+ (ar): Ug = 1,3 – 1,1 W/m²K • Dimensions max: 3210 mm x 6000 mm • Standard thicknesses: 4 - 5 - 6 - 8 - 10 - 12 mm • Processings: laminating