1 / 23

Active Transport, Endocytosis, and Exocytosis

Active Transport, Endocytosis, and Exocytosis. Section 3.5. Objectives. SWBAT describe active transport. SWBAT distinguish among endocytosis, exocytosis, and phagocytosis. Main Ideas Proteins can transport materials against a concentration gradient.

michel
Download Presentation

Active Transport, Endocytosis, and Exocytosis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Active Transport, Endocytosis, and Exocytosis Section 3.5

  2. Objectives • SWBAT describe active transport. • SWBAT distinguish among endocytosis, exocytosis, and phagocytosis. • Main Ideas • Proteins can transport materials against a concentration gradient. • Endocytosis and exocytosis transport materials across the cell membrane in vesicles.

  3. Vocabulary Section 3.5 • Endocytosis (endocitosis) • Exocytosis (exocitosis) • Phagocytosis (fagocitosis) • Active transport (transporteactivo) • ATP (adenosine triphosphate)

  4. Starter • Small lipid molecules are in high concentration outside a cell. They slowly cross the membrane into the cell. What term describes this action? Does it require energy? • Diffusion and no.

  5. Two Types of Transport • There are two ways of transporting materials across a cell membrane. They are: • Passive Transport – we have already looked at this. • Active Transport – actively drives molecules across the cell membrane from a region of lower concentration to a region of higher concentration. Requires energy input.

  6. Active Transport

  7. Active Transport Active transport drives molecules across a membrane from region of lower concentration to a region of higher concentration (remember our bicycle example). There are transport proteins that allow diffusion but there are others, often called pumps, that move materials against the concentration gradient.

  8. Active Transport Active transport requires energy input from a cell and enables a cell to move a substance against its concentration gradient. Cells use active transport to get needed molecules regardless of the concentration gradient to maintain homeostasis.

  9. Question • Are the protein pumps, like the Na/K pump in neurons, active or passive transport? • Explain how a protein pump works? • What kind of energy does it use?

  10. ATP (Adenosine Triphosphate) ATP is chemical energy made in a cell’s mitochondria. Besides in neurons, like we have already seen, ATP is needed to drive many other processes – including the making of ATP. ATP is used in the mitochondrial proton pump, moving hydrogen ions (H+) across the inner mitochondrial membrane. This proton pump is essential for the creation of ATP.

  11. ATP Like with sodium and potassium in the neuron, the hydrogen ions are “pumped,” using ATP, across the mitochondrial inner membrane (against the H+ gradient). They then diffuse across the membrane through a protein channel (an enzyme called ATP Synthase). The enzyme uses the movement of the H+ to create ATP from a precursor called ADP. ATP spent in active transport ATP created via diffusion through protein channel

  12. ATP Video • http://highered.mcgraw-hill.com/sites/9834092339/student_view0/chapter38/proton_pump.html

  13. Transport Proteins • All transport proteins/enzymes (which are proteins) span a membrane. • Most change shape when they bind to a target molecule or molecules. • As we have seen, some transport proteins bind to only one type of molecule. • Others bind to 2 different types. • Those that bind to two types can move both types of molecules either one way or opposite directions (like the sodium/potassium pump we saw in the neuron.

  14. Question • How do transport proteins that are pumps differ from those that are channels?

  15. Endocytosis • Endocytosis – the process of taking liquids or fairly large molecules into a cell by engulfing them in a membrane. • The cell membrane makes a pocket around the substance.

  16. Endocytosis

  17. Endocytosis • The pocket breaks off inside the cell and forms a vesicle. • The vesicle then fuses with a lysosome. • Lysosomal enzymes break down the vesicle membrane and the vesicle’s contents are release into the cell.

  18. Phagocytosis • Phagocytosis – the word literally means “cell eating.” • It is a special type of endocytosis which plays a major role in your immune system. • White blood cells find foreign materials, such as bacteria, engulf them and destroy them. • They are your body’s enforcers.

  19. Exocytosis Exocytosis is the opposite of endocytosis. It is the release of substances out of a cell by the fusion of a vesicle with the cell membrane. Note how the vesicle pinches off from the Golgi Apparatus. Remember that the Golgi Apparatus is the cell’s “storage, packing, and shipping center.”

  20. Exocytosis The cell forms a vesicle around material that needs to be removed or secreted. The vesicle is transported to the cell membrane. The vesicle membrane fuses with the cell membrane and releases the contents.

  21. Exocytosis in Neuron

  22. Exocytosis in Neuron The neurotransmitter is stored in vesicles in the terminus of the axon of the neuron. When the action potential arrives, the vesicles, via exocytosis, release their neurotransmitter (for example, acetylcholine) into the synaptic cleft.

  23. Exocytosis – Neuron to Muscle

More Related