
Recombinant DNA and Genetic Engineering Chapter 16
Familial Hypercholesterolemia • Gene encodes protein that serves as cell’s LDL receptor • Two normal alleles for the gene keep blood level of LDLs low • Two mutated alleles lead to abnormally high cholesterol levels & heart disease
Example of Gene Therapy • Woman with familial hypercholesterolemia • Part of her liver was removed • Virus used to insert normal gene for LDL receptor into cultured liver cells • Modified liver cells placed back in patient
Results of Gene Therapy • Modified cells alive in woman’s liver • Blood levels of LDLs down 20 percent • No evidence of atherosclerosis • Cholesterol levels remain high • Remains to be seen whether procedure will prolong her life
Genetic Changes • Humans have been changing the genetics of other species for thousands of years • Artificial selection of plants and animals • Natural processes also at work • Mutation, crossing over
Genetic Engineering • Genes are isolated, modified, and inserted into an organism • Made possible by recombinant technology • Cut DNA up and recombine pieces • Amplify modified pieces
Discovery of Restriction Enzymes • Hamilton Smith was studying how Haemophilus influenzae defend themselves from bacteriophage attack • Discovered bacteria have an enzyme that chops up viral DNA
Specificity of Cuts • Restriction enzymes cut DNA at a specific sequence • Number of cuts made in DNA will depend on number of times the “target” sequence occurs
Making Recombinant DNA 5’ G A A T T C 3’ C T T A A G one DNA fragment another DNA fragment 5’ G A A T T C 3’ 5’ C T T A A G 3’ In-text figurePage 254
Making Recombinant DNA nick 5’ G A A T T C 3’ 3’ C T T A A G 5’ nick DNA ligase action G A A T T C C T T A A G In-text figurePage 254
Using Plasmids • Plasmid is small circle of bacterial DNA • Foreign DNA can be inserted into plasmid • Forms recombinant plasmids • Plasmid is a cloning vector • Can deliver DNA into another cell
Using Plasmids DNA fragments + enzymes recombinant plasmids host cells containing recombinant plasmids Figure 16.4Page 255
Amplifying DNA • Fragments can be inserted into fast-growing microorganisms • Polymerase chain reaction (PCR)
Polymerase Chain Reaction • Sequence to be copied is heated • Primers are added and bind to ends of single strands • DNA polymerase uses free nucleotides to create complementary strands • Doubles number of copies of DNA
DNA heated to 90°– 94°C Primers added to base-pair with ends Mixture cooled; base-pairing of primers and ends of DNA strands DNA polymerases assemble new DNA strands Polymerase Chain Reaction Double-stranded DNA to copy Stepped Art Figure 16.6Page 256
Mixture cooled; base-pairing between primers and ends of single DNA strands DNA polymerase action again doubles number of identical DNA fragments Polymerase Chain Reaction Mixture heated again; makes all DNA fragments unwind Stepped Art Figure 16.6Page 256
DNA Fingerprints • Unique array of DNA fragments • Inherited from parents in Mendelian fashion • Even full siblings can be distinguished from one another by this technique
Tandem Repeats • Short regions of DNA that differ substantially among people • Many sites in genome where tandem repeats occur • Each person carries a unique combination of repeat numbers
Gel Electrophoresis • DNA is placed at one end of a gel • A current is applied to the gel • DNA molecules are negatively charged and move toward positive end of gel • Smaller molecules move faster than larger ones
Analyzing DNA Fingerprints • DNA is stained or made visible by use of a radioactive probe • Pattern of bands is used to: • Identify or rule out criminal suspects • Identify bodies • Determine paternity
Genome Sequencing • 1995 - Sequence of bacterium Haemophilus influenzae determined • Automated DNA sequencing now main method • Draft sequence of entire human genome determined in this way
Gene Libraries • Bacteria that contain different cloned DNA fragments • Genomic library • cDNA library
Engineered Proteins • Bacteria can be used to grow medically valuable proteins • Insulin, interferon, blood-clotting factors • Vaccines
Cleaning Up the Environment • Microorganisms normally break down organic wastes and cycle materials • Some can be engineered to break down pollutants or to take up larger amounts of harmful materials
The Ti plasmid • Researchers replace tumor-causing genes with beneficial genes • Plasmid transfers these genes to cultured plant cells plant cell foreign gene in plasmid Figure 16.11Page 261
Engineered Plants • Cotton plants that display resistance to herbicide • Aspen plants that produce less lignin and more cellulose • Tobacco plants that produce human proteins • Mustard plant cells that produce biodegradable plastic
First Engineered Mammals • Experimenters used mice with hormone deficiency that leads to dwarfism • Fertilized mouse eggs were injected with gene for rat growth hormone • Gene was integrated into mouse DNA • Engineered mice were 1-1/2 times larger than unmodified littermates
Cloning Dolly 1997 - A sheep cloned from an adult cell • Nucleus from mammary gland cell was inserted into enucleated egg • Embryo implanted into surrogate mother • Sheep is genetic replica of animal from which mammary cell was taken
Designer Cattle • Genetically identical cattle embryos can be grown in culture • Embryos can be genetically modified • create resistance to mad cow disease • engineer cattle to produce human serum albumin for medical use
The Human Genome Initiative Goal - Map the entire human genome • Initially thought by many to be a waste of resources • Process accelerated when Craig Ventner used bits of cDNAs as hooks to find genes • Sequencing was completed ahead of schedule in early 2001
Genomics • Structural genomics: actual mapping and sequencing of genomes of individuals • Comparative genomics: concerned with possible evolutionary relationships of groups of organisms
Using Human Genes • Even with gene in hand it is difficult to manipulate it to advantage • Viruses usually used to insert genes into cultured human cells but procedure has problems • Very difficult to get modified genes to work where they should
Can Genetically Engineered Bacteria “Escape”? • Genetically engineered bacteria are designed so that they cannot survive outside lab • Genes are included that will be turned on in outside environment, triggering death
Ethical Issues • Who decides what should be “corrected” through genetic engineering? • Should animals be modified to provide organs for human transplants? • Should humans be cloned?