Download
calibration of under water neutrino telescope antares n.
Skip this Video
Loading SlideShow in 5 Seconds..
Calibration of Under Water Neutrino Telescope ANTARES PowerPoint Presentation
Download Presentation
Calibration of Under Water Neutrino Telescope ANTARES

Calibration of Under Water Neutrino Telescope ANTARES

186 Views Download Presentation
Download Presentation

Calibration of Under Water Neutrino Telescope ANTARES

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Calibration of Under Water Neutrino Telescope ANTARES Garabed HALLADJIAN October 15th, 2008 GDR Neutrino, CPPM, Marseille

  2. Presentation plan • Introduction • Time calibration • Dark room calibration • In situ calibration • Efficiency control • Acoustic positioning system • Conclusion GDR Neutrino - G. Halladjian

  3. Introduction Good neutrino astronomy = Good angular resolution neutrino telescope GDR Neutrino - G. Halladjian

  4. Introduction Good neutrino astronomy = Good angular resolution neutrino telescope = Good calibration GDR Neutrino - G. Halladjian

  5. Detection principle 3D OM network Cherenkov light water earth muon interaction neutrino neutrino GDR Neutrino - G. Halladjian

  6. Detection principle 3D OM network Cherenkov light • Time • Positions • Charge water earth muon interaction neutrino GDR Neutrino - G. Halladjian

  7. ANTARES ν-telescope 12 lines 25 stories 3 OM 2475m 450m 70m GDR Neutrino - G. Halladjian

  8. Optical Beaconwith blue LEDs: timing calibration Optical Module:10” Hamamatsu PMT in 17” glass sphere (sTTS 1.3 ns) photon detection Local Control Module(in Ti cylinder): Front-end ASIC, DAQ/SC, DWDM, Clock, tilt/compass, power distribution… Hydrophone: acoustic positioning Storey components GDR Neutrino - G. Halladjian

  9. mrec−mtrue mrec−n dominated by kinematics m n dominated by reconstruction Angular resolution • Angular resolution better than 0.3° above a few TeV, limited by: • Light scattering + chromatic dispersion in sea water: σ ~ 1.0 ns • TTS in photomultipliers: σ ~ 1.3 ns • Electronics + time calibration: σ < 0.5 ns • OM position reconstruction: σ < 10 cm (↔ σ < 0.5 ns) GDR Neutrino - G. Halladjian

  10. Time calibration • Internal clock calibration system • Optical Beacons • K40 decay • Internal Optical Module LEDs • … GDR Neutrino - G. Halladjian

  11. E/O/E GPS START STOP TX RX START STOP TDC Clock distribution Junction Box 116 passive splitter On-shore Station Link Cables 200-500 m fibre Main Electro-Optical Cable 40 km from shore to Junction Box Single bidirectional fibre (1534 nm / 1549 nm) Local Control Modules LCM clock boards String Control Module BIDI modules O/E and E/O converters by sectors (5 storeys) GDR Neutrino - G. Halladjian

  12. In situ measurementsof clock delay Transit time measuring of principal EO cable GDR Neutrino - G. Halladjian

  13. Clock phase in situmeasurements Individual relative delay measuring of clock for each storey σ ~ 9 ps σ ~ 11 ps Line 4, storey 16 Line 12, storey 8 GDR Neutrino - G. Halladjian

  14. OM time calibration Dark room calibration In situ calibration GDR Neutrino - G. Halladjian

  15. Dark room calibration Apparatus check ! t0 Filter t2 t1 Laser 532 nm t3 Attenuator Optical fibers Optical Splitter GDR Neutrino - G. Halladjian

  16. OMs calibration in dark room t (ns) GDR Neutrino - G. Halladjian

  17. OMs calibration in dark room t (ns) GDR Neutrino - G. Halladjian

  18. Optical Beaconwith blue LEDs: timing calibration Optical beacon • 36 LEDs • λ= 470 nm • Rise time ~ 1.9 ns • FWHN ~ 5 ns GDR Neutrino - G. Halladjian

  19. Time in OMs relative to reference PMT in OB 15 m Time difference between signals from 2 OMs in a storey Optical beacon MILOM Intense light flash:PMT TTS contributionis negligible Timing resolution of electronics <0.5ns Led OpticalBeacon: 32 blue LEDs synchronisedflash < 0.5 ns GDR Neutrino - G. Halladjian

  20. s = 2.6 ns • "diagonal" • larger distance • less intensity • light scattering s = 0.7 ns "horizontal" Dt [ns] Line 1 time calibrationwith MILOM LED beacon All timing measurements in good agreement with expectations Line 1 MILOM ~150 m ~70 m GDR Neutrino - G. Halladjian

  21. Light attenuation measuredby optical LED beacons GDR Neutrino - G. Halladjian

  22. Light attenuation measuredby optical LED beacons GDR Neutrino - G. Halladjian

  23. LED beacon Time calibration RMS 0.74ns On shore laser system RMS 0.60ns In sea LED beacon system Optical fibres Laser GDR Neutrino - G. Halladjian

  24. In situ calibration with K40 Integral under peak = rate of correlated coincidences MC prediction =13 ± 4 Hz Gaussian peak on coincidence plot Peak time offset : Cross check of time calibration High precision (~5%) monitoring of OM efficiencies Cherenkov photons e- 40Ca 40K GDR Neutrino - G. Halladjian

  25. Coincidence on 2 storeys 2 pairs of coincidences in adjacent storeys ±20 ns in same storey GDR Neutrino - G. Halladjian

  26. ±100 ns between storey Preliminary Calibration with down-goingmuons 2 pairs of coincidences in adjacent storeys GDR Neutrino - G. Halladjian

  27. Relative positioning of detector Z(m) Example for Sea current V = 25 cm/s rmax = 22 m r(m) GDR Neutrino - G. Halladjian

  28. Acoustic positioning system 5 + 1 Receiver / line AutonomousTransponder Transmitter Receiver GDR Neutrino - G. Halladjian

  29. Acoustic positioning system • Frequency = 40 – 60 kHz • Accuracy < 10 cm • Acoustic cycle: Successive emission of each BSS in each second • Simultaneous measure of acoustic propagation times between each transmitter and all hydrophones • 3D position determination of each hydrophone using all RxTxRx distances of acoustic cycle (global positioning each 2 minutes) GDR Neutrino - G. Halladjian

  30. Acoustic components Current velocity Pressure E. Conductivity Temperature CCTD Receiver Celerimeter After current correction Pressure sensor Transmitter / Receiver GDR Neutrino - G. Halladjian

  31. Sound Velocity GDR Neutrino - G. Halladjian

  32. Acoustic measurementsof fixed distances L2→L3 L3→L2 average 5 mm After current correction GDR Neutrino - G. Halladjian

  33. Acoustic measurementsof fixed distances L2→L3 L3→L2 average 5 mm After current correction + = + = GDR Neutrino - G. Halladjian

  34. Acoustic measurementsof fixed distances L2→L3 L3→L2 average 5 mm After current correction GDR Neutrino - G. Halladjian

  35. Acoustic measurementsof hydrophone distances Hydrophone : Ligne 4 étage 25 Emission transpondeur Emission RxTx ligne 5 GDR Neutrino - G. Halladjian

  36. Acoustic triangulationof hydrophones GDR Neutrino - G. Halladjian

  37. Acoustic triangulationof hydrophones GDR Neutrino - G. Halladjian

  38. Acoustic triangulationof hydrophones Radial displacement GDR Neutrino - G. Halladjian

  39. Storey 1 Storey 8 Storey 14 Storey 20 Storey 25 Acoustic triangulationof hydrophones Radial displacement GDR Neutrino - G. Halladjian

  40. Radial displacement Radial displacement GDR Neutrino - G. Halladjian

  41. BSS absolute positions • BSS position are measured by the boat • Boat position are measured by satellites DGPS LF LBL (σx σy ~ 1m) GDR Neutrino - G. Halladjian

  42. Before triangulation GDR Neutrino - G. Halladjian

  43. Before triangulation 7 m GDR Neutrino - G. Halladjian

  44. BSS position uncertainty Before triangulation GDR Neutrino - G. Halladjian

  45. BSS position uncertainty Before triangulation GDR Neutrino - G. Halladjian

  46. BSS position uncertainty Before triangulation GDR Neutrino - G. Halladjian

  47. BSS position uncertainty Before triangulation GDR Neutrino - G. Halladjian

  48. BSS absolute positions Distances between BSSs (acoustic distances) decrease the uncertainty on BSS positions. DGPS HF GDR Neutrino - G. Halladjian

  49. BSS position uncertainty Before triangulation After triangulation GDR Neutrino - G. Halladjian

  50. BSS position uncertainty Before triangulation After triangulation GDR Neutrino - G. Halladjian