1 / 40

Lecture 8

Lecture 8. List and list operations (continue). Formal Definition of a List. A list is either ‘() -- The empty list A pair whose cdr is a list. Note that lists are closed under the operations cons and cdr. 1. 4. 3. 2. 4. 3. 1. 2. 4. 3. 1. 2. More Elaborate Lists.

maymed
Download Presentation

Lecture 8

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 8 List and list operations (continue). מבוא מורחב - שיעור 8

  2. Formal Definition of a List A list is either • ‘() -- The empty list • A pair whose cdr is a list. Note that lists are closed under the operations consand cdr. מבוא מורחב - שיעור 8

  3. 1 4 3 2 4 3 1 2 4 3 1 2 More Elaborate Lists (list 1 2 3 4) (cons (list 1 2) (list 3 4)) (list (list 1 2) (list 3 4)) מבוא מורחב - שיעור 8

  4. The Predicate Null? null? : anytype -> boolean (null? <z>) #t if <z> evaluates to empty list #f otherwise (null? 2)  #f (null? (list 1))  #f (null? (cdr (list 1)))  #t (null? ’())  #t (null? null)  #t מבוא מורחב - שיעור 8

  5. The Predicate Pair? pair? : anytype -> boolean (pair? <z>) #tif <z> evaluates to a pair #f otherwise. (pair? (cons 1 2))  #t (pair? (cons 1 (cons 1 2)))  #t (pair? (list 1))  #t (pair? ’())  #f (pair? 3)  #f (pair? pair?)  #f מבוא מורחב - שיעור 8

  6. The Predicate Atom? atom? : anytype -> boolean (define (atom? z) (and (not (pair? z)) (not (null? z)))) (define (square x) (* x x)) (atom? square)  #t (atom? 3)  #t (atom? (cons 1 2))  #f מבוא מורחב - שיעור 8

  7. Working with lists: some basic list manipulation מבוא מורחב - שיעור 8

  8. (define (list-ref lst n) (if (= n 0) (car lst) (list-ref (cdr lst) (- n 1)))) Cdring Down a List 1 (list-ref (list 1 2 3) 0)  Error (list-ref (list 1 2 3) 3)  מבוא מורחב - שיעור 8

  9. (define (length lst) (if (null? lst) 0 (+ 1 (length (cdr lst))))) Cdring Down a List, another example מבוא מורחב - שיעור 8

  10. (define squares (list 1 4 9 16)) (define odds (list 1 3 5 7)) (append squares odds) (1 4 9 16 1 3 5 7) (append odds squares) (1 3 5 7 1 4 9 16) list2 list1 4 1 2 3 Can’t make this pointer Change, so… Consing Up a List (define (append list1 list2) (cond ((null? list1) list2); base (else (cons (car list1); recursion (append (cdr list1) list2))))) מבוא מורחב - שיעור 8

  11. (append list1 list2) (cons 1 (append (2) list2)) (cons 1 (cons 2 (append () list2))) (cons 1 (cons 2 list2)) list2 list1 4 1 2 3 1 2 Append: process (define (append list1 list2) (cond ((null? list1) list2); base (else (cons (car list1); recursion (append (cdr list1) list2))))) • (define list1 (list 1 2)) • (define list2 (list 3 4)) (1 2 3 4) מבוא מורחב - שיעור 8

  12. cons (car lst) 1 3 2 4 (reverse (cdr lst)) Wishful thinking… Reverse of a list (define (reverse lst) (cond ((null? lst) lst) (else ( (reverse (cdr lst)) ))))) cons (car lst) (reverse (list 1 2 3 4))

  13. (reverse (cdr lst)) (list (car lst)) 3 2 4 1 1 3 2 4 Reverse of a list (define (reverse lst) (cond ((null? lst) lst) (else ( (reverse (cdr lst)) ))))) append (list (car lst)) (reverse (list 1 2 3 4)) (append ) Append: T(n) = c*n = (n) Reverse: T(n) = c*(n-1) + c*(n-2)+ … + c*1 = (n2)

  14. (integers-between 2 4) (cons 2 (integers-between 3 4))) (cons 2 (cons 3 (integers-between 4 4))) (cons 2 (cons 3 (cons 4 (integers-between 5 4)))) (cons 2 (cons 3 (cons 4 null))) (2 3 4) 2 3 4 Enumerating (define (integers-between lo hi) (cond ((> lo hi) null) (else (cons lo (integers-between (+ 1 lo) hi))))) מבוא מורחב - שיעור 8

  15. (enumerate-squares 2 4) (cons 4 (enumerate-squares 3 4))) (cons 4 (cons 9 (enumerate-squares 4 4))) (cons 4 (cons 9 (cons 16 (enumerate-squares 5 4)))) (cons 4 (cons 9 (cons 16 ‘()))) (4 9 16) 9 4 16 Enumerate Squares (define (enumerate-squares from to) (cond ((> from to) '()) (else (cons (square from) (enumerate-squares (+ 1 from) to))))) מבוא מורחב - שיעור 8

  16. 2 4 internal node 6 8 4 2 internal node leaf leaf 8 6 Trees • Abstract tree: • a leaf (a node that has no children, and contains data) - is a tree • an internal node (a node whose children are trees) – is a tree • Implementation of tree: • a leaf - will be the data itself • an internal node – will be a list of its children מבוא מורחב - שיעור 8

  17. Count Leaves of a Tree • Strategy • base case: count of an empty tree is 0 • base case: count of a leaf is 1 • recursive strategy: the count of a tree is the sum of the countleaves of each child in the tree. • Implementation: (define (leaf? x) (atom? x)) מבוא מורחב - שיעור 8

  18. 4 2 5 7 Count Leaves (define (countleaves tree) (cond ((null? tree) 0) ;base case ((leaf? tree) 1) ;base case (else ;recursive case (+ (countleaves (car tree)) (countleaves (cdr tree)))))) (define my-tree (list 4 (list 5 7) 2)) מבוא מורחב - שיעור 8

  19. + (cl 4) (cl ((5 7) 2) ) (cl (5 7)) (cl (2)) + + (cl 2) (cl null) + + 4 2 (cl 7) (cl null) (cl (7)) (cl 5) 5 7 Countleaves my-tree (countleaves my-tree) ==> 4 (cl (4 (5 7) 2)) 4 3 1 2 1 1 1 1 0 1 0 מבוא מורחב - שיעור 8

  20. Enumerate-Leaves • Goal: given a tree, produce a list of all the leaves • Strategy • base case: list of empty tree is empty list • base case: list of a leaf is one element list • otherwise, recursive strategy: build a new list from a list of the leaves of the first child and a list of the leaves of the rest of the children מבוא מורחב - שיעור 8

  21. Enumerate-Leaves (define (enumerate-leaves tree) (cond ((null? tree) null) ;base case ((leaf? tree) ) ;base case (else ;recursive case ((enumerate-leaves (car tree)) (enumerate-leaves (cdr tree)))))) מבוא מורחב - שיעור 8

  22. 5 7 4 2 4 2 5 7 Enumerate-Leaves (define (enumerate-leaves tree) (cond ((null? tree) null) ;base case ((leaf? tree) (list tree)) ;base case (else ;recursive case (append(enumerate-leaves (car tree)) (enumerate-leaves (cdr tree)))))) מבוא מורחב - שיעור 8

  23. ap (el 4) (el ((5 7) 2) ) ap (cl (5 7)) (el (2)) ap (el (7)) (el 5) (el 2) (el nil) ap (el 7) (el nil) Enumerate-leaves (el (4 (5 7) 2)) (4 5 7 2) (5 7 2) (4) (5 7) (2) ap (7) (5) (2) () (7) () מבוא מורחב - שיעור 8

  24. Your Turn: Scale-tree • Goal: given a tree, produce a new tree with all the leaves scaled • Strategy • base case: scale of empty tree is empty tree • base case: scale of a leaf is product • otherwise, recursive strategy: build a new tree from a scaled version of the first child and a scaled version of the rest of children מבוא מורחב - שיעור 8

  25. Scale-tree (define (scale-tree tree factor) (cond ((null? tree) ) ;base case ((leaf? tree) ) (else ;recursive case (cons )))) null (* tree factor) (scale-tree (car tree) factor) (scale-tree (cdr tree) factor) מבוא מורחב - שיעור 8

  26. List abstraction • Find common high order patterns • Distill them into high order procedures • Use these procedures to simplify list operations Patterns: • Mapping • Filtering • Accumulating מבוא מורחב - שיעור 8

  27. Mapping (define (map proc lst) (if (null? lst) null (cons (proc (car lst)) (map proc (cdr lst))))) (define (square-list lst) (map square lst)) (define (scale-list lst c) (map (lambda (x) (* c x)) lst)) (scale-list (integers-between 1 5) 10) ==> (10 20 30 40 50) מבוא מורחב - שיעור 8

  28. Mapping: process (define (map proc lst) (if (null? lst) null (cons (proc (car lst)) (map proc (cdr lst))))) (map square (list 1 2 3)) (cons (square 1) (map square (list 2 3))) (cons 1 (map square (list 2 3))) (cons 1 (cons (square 2) (map square (list 3)))) (cons 1 (cons 4 (map square (list 3)))) (cons 1 (cons 4 (cons (square 3) (map square null)))) (cons 1 (cons 4 (cons 9 (map square null)))) (cons 1 (cons 4 (cons 9 null))) (1 4 9) מבוא מורחב - שיעור 8

  29. Alternative Scale-tree • Strategy • base case: scale of empty tree is empty tree • base case: scale of a leaf is product • otherwise: a tree is a list of subtrees and use map. (define (scale-tree tree factor) (cond ((null? tree) null) ((leaf? tree) (* tree factor)) (else ;it’s a list of subtrees (map (lambda (child) (scale-tree child factor)) tree)))) מבוא מורחב - שיעור 8

  30. Generalized Mapping (map <proc> <list1>…<listn>) Returns a list in which proc is applied to the i-th elements of the lists respectively. (map + (list 1 2 3) (list 10 20 30) (list 100 200 300)) ==> (111 222 333) (map (lambda (x y) (+ x (* 2 y))) (list 1 2 3) (list 4 5 6)) ==> (9 12 15) We will see how to write such a procedure later! מבוא מורחב - שיעור 8

  31. (define (filter pred lst) (cond ((null? lst) null) ((pred (car lst)) (cons (car lst) (filter pred (cdr lst)))) (else (filter pred (cdr lst))))) Filtering (filter odd? (integers-between 1 10)) (1 3 5 7 9) מבוא מורחב - שיעור 8

  32. (define (filter pred lst) (cond ((null? lst) null) ((pred (car lst)) (cons (car lst) (filter pred (cdr lst)))) (else (filter pred (cdr lst))))) Filtering: process (filter odd? (list 1 2 3 4)) (cons 1 (filter odd? (list 2 3 4))) (cons 1 (filter odd? (list 3 4))) (cons 1 (cons 3 (filter odd? (list 4)))) (cons 1 (cons 3 (filter odd? null))) (cons 1 (cons 3 null)) (1 3) מבוא מורחב - שיעור 8

  33. 2 3 4 5 6 7 8 9 10 2 X X 7 X XX 11 12 13 14 15 16 17 18 19 20 XX XX XX XX XX XX 21 22 23 24 25 26 27 28 29 30 XX XX XX XX XX XX XX 3 5 X X XX 31 32 33 34 35 36 37 38 39 40 XX XX XX XX XX XX XX XX XX XX XX 41 42 43 44 45 46 47 48 49 50 XX XX XX XX XX XX XX XX XX XX XX XX XX 51 52 53 54 55 56 57 58 59 60 XX XX XX XX XX XX XX XX XX XX XX 61 62 63 64 65 66 67 68 69 60 XX XX XX XX XX XX XX XX XX XX XX XX 71 72 73 74 75 76 77 78 79 80 XX XX XX XX XX XX XX XX XX XX XX XX 81 82 83 84 85 86 87 88 89 90 XX XX XX XX XX XX XX XX XX XX XX XX XX 91 92 93 94 95 96 97 98 99 100 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX Finding all the Primes: Sieve of Eratosthenes (a.k.a. Beta) מבוא מורחב - שיעור 8

  34. .. And here’s how to do it! (define (sieve lst) (if (null? lst) ‘() (cons (car lst) (sieve (filter (lambda (x) (not (divisible? x (car lst)))) (cdr lst)))))) ==> (sieve (list 2 3 4 5 … 100)) (cons 2 (sieve (filter (lambda (x) (not (divisible? X 2) (list 3 4 5 …100 )))) מבוא מורחב - שיעור 8

  35. How sieve works (define (sieve lst) (if (null? lst) ‘() (cons (car lst) (sieve (filter (lambda (x) (not (divisible? x (car lst)))) (cdr lst)))))) • Sieve takes as argument a list of numbers L and returns a list M. • Take x, the first element of L and make it the first element in M. • Drop all numbers divisible by x from (cdr L). • Call sieve on the resulting list, to generate the rest of M. מבוא מורחב - שיעור 8

  36. The Prime Number Theorem: (n) = Θ(n/log n) (For large n the constants are nearly 1) What’s the time complexity of sieve? (define (sieve lst) (if (null? lst) ‘() (cons (car lst) (sieve (filter (lambda (x) (not (divisible? x (car lst)))) (cdr lst)))))) Assume lst is (list 2 3 ... n). How many times is filter called? (n) (number of primes < n) מבוא מורחב - שיעור 8

  37.  T(n) = O( ) n2/log n What’s the time complexity of sieve? (cont’) (define (sieve lst) (if (null? lst) ‘() (cons (car lst) (sieve (filter (lambda (x) (not (divisible? x (car lst)))) (cdr lst)))))) Filter is called Θ(n/log n) times Filter is called Θ(n/log n) times for primes p ≤ n/2 (n/2+1..n) = (n) - (n/2) = Θ(n/log n)  Each such call to filter does Ω(n/log n) work  T(n) = Ω( n2 /(log n)2 ) The problem is that filter has to scan all of the list! מבוא מורחב - שיעור 8

  38. 66 (about two thirds) Another example Find the number of integers x in the range [1…100] s.t.: x * (x + 1) is divisible by 6. (length (filter _____________________________________ (map _________________________________ _________________________________)))) (lambda(n) (= 0 (remainder n 6))) (lambda(n) (* n (+ n 1))) (integers-between 1 100) Any bets on the result???? מבוא מורחב - שיעור 8

  39. Accumulating Add up the elements of a list (define (add-up lst) (if (null? lst) 0 (+ (car lst) (add-up (cdr lst))))) Multiply all the elements of a list (define (mult-all lst) (if (null? lst) 1 (* (car lst) (mult-all (cdr lst))))) (define (accumulate op init lst) (if (null? lst) init (op (car lst) (accumulate op init (cdr lst))))) מבוא מורחב - שיעור 8

  40. eln eln-1 init el1 …….. op op op ... op Accumulating (cont.) (define (accumulate op init lst) (if (null? lst) init (op (car lst) (accumulate op init (cdr lst))))) (define (add-up lst) (accumulate + 0 lst)) (define (mult-all lst) (accumulate * 1 lst)) מבוא מורחב - שיעור 8

More Related