1 / 32

Computer simulations of electrical activity in the SAN

Rubin R. Aliev Email: rubaliev@gmail.com www : http://lep.mipt.ru Moscow Institute of Physics and Technology Institute of Theoretical and Experimental Biophysics Federal Medico-Biological Agency. Computer simulations of electrical activity in the SAN. SAN pacemaker membrane model.

macy
Download Presentation

Computer simulations of electrical activity in the SAN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Rubin R. Aliev Email: rubaliev@gmail.com www: http://lep.mipt.ru Moscow Institute of Physics and Technology Institute of Theoretical and Experimental Biophysics Federal Medico-Biological Agency Computer simulations of electrical activity in the SAN

  2. SAN pacemaker membrane model Ach-modified currents Model described in: Zhang et al. Am. J. Physiol., 279, H397-421 (2000), Zhang et al. J. Cardiovasc. Electrophysiol., 13, 465-474 (2002).

  3. Master equation for the transmembrane current iNa – натриевый ток, iCa,T, iCa,L – кальциевые токи Т и L типа, if – активируемый при гиперполяризации ток, ib,Na, ib,Ca, ib,K – фоновые токи, iK,r, iK,s – быстрый и медленный калиевые токи задержанного выпрямления, ito, isus – компоненты чувствительного к 4-AP тока, iK,АCh – активируемый АЦХ калиевый ток, iNaK – Na-K насос, iNaCa – Na-Ca обменник, ip,Ca – кальциевый насос.

  4. Membrane + intracellular currents From: Алиев РР, Чайлахян ЛМ. ДАН 402 (2005). RR Aliev, LM Chailakhyan Doklady Acad Sci 402 (1), 236-239

  5. The effect of Ach on SAN cells t |ACh| = D2|ACh| - k|ACh||AChE| r R ACh AChE Алиев РР, Розенштраух ЛВ. Росс.Физиол.Ж. 92(9), 1069-1077(2006). Aliev Rozenshtraukh Rus Physiol J.

  6. Experiment Stimulation electrode Superior vena cava С У Right atrium п о г р а н и ч н ы й г р е б е ш о к

  7. Effect of vagal stimulation on SAN pacemaker cells. CL increase by 14 %. Алиев Р.Р., Абрамочкин Д., Розенштраух Л.В. Рос.Физиол.Ж., 95(1), 49-57 (2009).

  8. Phase response curves as function of stimuli number: from 1 to 10. Алиев Р.Р., Абрамочкин Д., Розенштраух Л.В. Рос.Физиол.Ж., 95(1), 49-57 (2009).

  9. Close to membrane concentrations, currents and transmembrane potential. Алиев Р.Р., Абрамочкин Д., Розенштраух Л.В. Рос.Физиол.Ж., 95(1), 49-57 (2009).

  10. PRL curves computed and experimental Алиев Р.Р., Абрамочкин Д., Розенштраух Л.В. Рос.Физиол.Ж., 95(1), 49-57 (2009).

  11. Theoretical width of the zone of positive chronotropic affect as a function of number of stimuli (а). Experiment for single stimulation(б). For phases 0.85 to 1.0 there is a positive chronotropic effect. Алиев Р.Р., Абрамочкин Д., Розенштраух Л.В. Рос.Физиол.Ж., 95(1), 49-57 (2009).

  12. Sync and De-sync od SAN cells Desynchronization Рассогласование: Тс – Period of stimulation, Т0 – Period of unperturbed oscillations

  13. (а)unperturbed oscillations, Т0=340 мс; (б-д)stimulation with the period 306, 323, 374, 510 ms, which corresponds tor, -0.1, -0.05, 0.1, 0.5 (numbers left). It is seen that at positive r – increase CL; atr =–0.05 – decrease CL, atr = -0.1 – desync. Алиев Р.Р. Биофизика, т.53(6), c.1125–1128 (2008). RR Aliev Biophysics 53 (6), 645-647

  14. Established averaged ratio of frequences (а) and phase shifts(б) as functions of r. sync activity correspond to horisontal zones in (а)and monotonic parts in(б). Алиев Р.Р. Биофизика, т.53(6), c.1125–1128 (2008). RR Aliev Biophysics 53 (6), 645-647

  15. Two cells connected via gap junctions

  16. Сюняев Р.А., Алиев Р.Р. Биофизика, 54(1), 77-80 (2009). RA Siuniaev, RR Aliev Biofizika 54 (1), 77-80

  17. Сюняев Р.А., Алиев Р.Р. Биофизика, 54(1), 77-80 (2009). RA Siuniaev, RR Aliev Biofizika 54 (1), 77-80

  18. Сюняев Р.А., Алиев Р.Р. Биофизика, 54(1), 77-80 (2009). RA Siuniaev, RR Aliev Biofizika 54 (1), 77-80

  19. Development of synchronization Сюняев Р.А., Алиев Р.Р. Биофизика, 54(1), 77-80 (2009). RA Siuniaev, RR Aliev Biofizika 54 (1), 77-80

  20. Simulating 1D, 2D, 3D

  21. Simulating SAN: 2D. ACh results in a functional block of conduction Syunyaev, Aliev Biophysics (rus.),55(6), 1132 -7 (2010).

  22. Syunyaev, Aliev. RJNAMM 26(6) 575-587(2011)

  23. Simulating SAN: 2D. Inhomogeneity. Из: Dobrzynski H et al., Circulation 2005; 111:846-854.

  24. Моделирование СУ: 3D. Миграция водителя ритма

  25. Syunyaev, Aliev. RJNAMM 26(6) 575-587(2011)

  26. 2D Syunyaev, Aliev Biophysics (rus.),55(6), 1132 -7 (2010). 3D Syunyaev, Aliev. RJNAMM 26(6) 575-587(2011)

  27. Evolution of pacemaker density in the SAN. Note the initially large number of pacemakers significantly drops during first few seconds. Syunyaev, Aliev. RJNAMM 26(6) 575-587(2011)

  28. Syunyaev, Aliev. RJNAMM 26(6) 575-587(2011)

  29. Syunyaev, Aliev. RJNAMM 26(6) 575-587(2011)

  30. Email: rubaliev@gmail.com www: http://lep.mipt.ru Moscow Institute of Physics and Technology Institute of Theoretical and Experimental Biophysics Federal Medico-Biological Agency Thank you for your patience!

More Related