Lecture 3 - Fundamentals - PowerPoint PPT Presentation

lotus
lecture 3 fundamentals l.
Skip this Video
Loading SlideShow in 5 Seconds..
Lecture 3 - Fundamentals PowerPoint Presentation
Download Presentation
Lecture 3 - Fundamentals

play fullscreen
1 / 60
Download Presentation
Lecture 3 - Fundamentals
275 Views
Download Presentation

Lecture 3 - Fundamentals

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Lecture 3 - Fundamentals January 17, 2002 CVEN 444

  2. Lecture Goals • Design Process • Limit states • Design Philosophy • Loading

  3. Design Process • Phase 1: Definition of clients’ needs and priorities. • Functional requirements • Aesthetic requirements • Budgetary requirements

  4. Design Process • Phase 2: Development of project concept • Develop possible layouts • Approximate analysis preliminary members sizes/cost for each arrangement

  5. Design Process • Phase 2: Development of project concept • Selection most desirable structural system • Appropriateness • Economical/Cost • Maintainability

  6. Design Process • Phase 3: Design of individual system • Structural analysis (based on preliminary design) • Moments • Shear forces • Axial forces

  7. Design Process • Phase 3: Design of individual system(cont.) • Member design • Prepare construction days and specifications. • Proportion members to resist forces • aesthetics • constructability • maintainability

  8. Limit States and Design Limit State: Condition in which a structure or structural element is no longer acceptable for its intended use. Major groups for RC structural limit states • Ultimate • Serviceability • Special

  9. Ultimate Limit State Ultimate limit state • structural collapse of all or part of the structure ( very low probability of occurrence) and loss of life can occur. • Loss of equilibrium of a part or all of a structure as a rigid body (tipping, sliding of structure).

  10. Ultimate Limit States Ultimate limit state • Rupture of critical components causing partial or complete collapse. (flexural, shear failure).

  11. Ultimate Limit States • Progressive Collapse • Minor local failure overloads causing adjacent members to failure entire structure collapses. • Structural integrity is provided by tying the structure together with correct detailing of reinforcement provides alternative load paths in case of localized failure

  12. Ultimate Limit States • Formation of a plastic mechanism - yielding of reinforced forms plastic hinges at enough sections to make structure unstable. • Instability cased by deformations of structure causing buckling of members. • Fatigue - members can fracture under repeated stress cycles of service loads (may cause collapse).

  13. Serviceability Limit States • Functional use of structure is disrupted, but collapse is not expected • More often tolerated than an an ultimate limit state since less danger of loss of life. • Excessive crack width leakage corrosion of reinforcement gradual deterioration of structure.

  14. Serviceability Limit States • More often tolerated than an an ultimate limit state since less danger of loss of life. • Excessive deflections for normal service caused by possible effects • malfunction of machinery • visually unacceptable

  15. Serviceability Limit States • More often tolerated than an an ultimate limit state since less danger of loss of life. • Excessive deflections for normal service caused by possible effects • damage of nonstructural elements • changes in force distributions • ponding on roofs collapse of roof

  16. Serviceability Limit States • More often tolerated than an an ultimate limit state since less danger of loss of life. • Undesirable vibrations • vertical floors/ bridges • lateral/torsional tall buildings • Change in the loading

  17. Special Limit States Damage/failure caused by abnormal conditions or loading. • Extreme earthquakes damage/collapse • Floods damage/collapse

  18. Special Limit States Damage/failure caused by abnormal conditions or loading. • Effects of fire,explosions, or vehicular collisions. • Effects of corrosion, deterioration • Long-term physical or chemical instability

  19. Limit States Design • Identify all potential modes of failure. • Determine acceptable safety levels for normal structures building codes load combination/factors.

  20. Limit States Design • Consider the significant limits states. • Members are designed for ultimate limit states • Serviceability is checked. Exceptions may include • water tanks (crack width) • monorails (deflection)

  21. ACI Building Codes Whenever two different materials , such as steel and concrete, acting together, it is understandable that the analysis for strength of a reinforced concrete member has to be partial empirical although rational. These semi-rational principles and methods are being constant revised and improved as a result of theoretical and experimental research accumulate. The American Concrete Institute (ACI), serves as clearing house for these changes, issues building code requirements.

  22. Design Philosophy • Two philosophies of design have long prevalent. • Working stress method focuses on conditions at service loads. • Strength of design method focusing on conditions at loads greater than the service loads when failure may be imminent. • The strength design method is deemed conceptually more realistic to establish structural safety.

  23. Strength Design Method In the strength method, the service loads are increased sufficiently by factors to obtain the load at which failure is considered to be “imminent”. This load is called the factored load or factored service load.

  24. Strength Design Method Strength provide is computed in accordance with rules and assumptions of behavior prescribed by the building code and the strength required is obtained by performing a structural analysis using factored loads. The “strength provided” has commonly referred to as “ultimate strength”. However, it is a code defined value for strength and not necessarily “ultimate”. The ACI Code uses a conservative definition of strength.

  25. Safety Provisions Structures and structural members must always be designed to carry some reserve load above what is expected under normal use.

  26. Safety Provisions There are three main reasons why some sort of safety factor are necessary in structural design. [1] Variability in resistance. [2] Variability in loading. [3] Consequences of failure.

  27. Variability in Resistance • Variability of the strengths of concrete and reinforcement. • Differences between the as-built dimensions and those found in structural drawings. • Effects of simplification made in the derivation of the members resistance.

  28. Variability in Resistance Comparison of measured and computed failure moments based on all data for reinforced concrete beams with fc > 2000 psi.

  29. Variability in Loading Frequency distribution of sustained component of live loads in offices.

  30. Consequences of Failure A number of subjective factors must be considered in determining an acceptable level of safety. • Potential loss of life. • Cost of clearing the debris and replacement of the structure and its contents. • Cost to society. • Type of failure warning of failure, existence of alternative load paths.

  31. Margin of Safety The distributions of the resistance and the loading are used to get a probability of failure of the structure.

  32. Margin of Safety The term Y = R - S is called the safety margin. The probability of failure is defined as: and the safety index is

  33. Loading SPECIFICATIONS Cities in the U.S. generally base their building code on one of the three model codes: • Uniform Building Code • Basic Building Code (BOCA) • Standard Building Code

  34. Loading These codes have been consolidated in the 2000 International Building Code. Loadings in these codes are mainly based on ASCE Minimum Design Loads for Buildings and Other Structures (ASCE 7-95) – has beenupdated to ASCE 7-98.

  35. Dead Loading • Weight of all permanent construction • Constant magnitude and fixed location

  36. Dead Loads Examples: • Weight of the Structure (Walls, Floors, Roofs, Ceilings, Stairways) • Fixed Service Equipment (HVAC, Piping Weights, Cable Tray, Etc.) Can Be Uncertain…. • pavement thickness • earth fill over underground structure

  37. Live Loads • Loads produced by use and occupancy of the structure. • Maximum loads likely to be produced by the intended use. • Not less than the minimum uniformly distributed load given by Code.

  38. Live Loads See Table 2-1 from ASCE 7-95 Stairs and exitways: 100 psf Storage warehouses: 125 psf (light) 250 psf (heavy) Minimum concentrated loads are also given in the codes.

  39. Live Loads

  40. Live Loads ASCE 7-95 allows reduced live loads for members with influence area (AI) of 400 sq. ft. or more: where Lo  0.50 Lo for members supporting one floor  0.40 Lo otherwise

  41. Live Loads AI determined by raising member to be designed by a unit amount. Portion of loaded area that is raised = AI Beam: AI = 2 * tributary area Column: AI = 4 * tributary area Two-Way Slab: AI = panel area (see Fig. 2-10, text)

  42. Load Reduction

  43. Environmental Loads • Snow Loads • Earthquake • Wind • Soil Pressure • Ponding of Rainwater • Temperature Differentials

  44. Classification of Buildings for Wind, Snow and Earthquake Loads Based on Use Categories (I through IV) I II Buildings and other structures that represent a low hazard to human life in the event of a failure (such as agricultural facilities) Buildings/structures not in categories I, III, and IV

  45. Classification of Buildings for Wind, Snow and Earthquake Loads Based on Use Categories (I through IV) Buildings/structures that represent a substantial hazard to human life in the event of a failure (assembly halls, schools, colleges, jails, buildings containing toxic/explosive substances) III

  46. Classification of Buildings for Wind, Snow and Earthquake Loads Based on Use Categories (I through IV) Buildings/structures designated essential facilities (hospitals, fire and police stations, communication centers, power-generating stations) IV

  47. Snow Loads The coefficients of snow loads are defined in weight.

  48. Snow Loads Ground Snow Loads (Map in Fig. 6, ASCE 7): • Based on historical data (not always the maximum values) • Basic equation in codes is for flat roof snow loads • Additional equations for drifting effects, sloped roofs, etc. • Use ACI live load factor • No LL reduction factor allowed

  49. Wind Loads • Wind pressure is proportional to velocity squared (v2 ) • Wind velocity pressure = qz

  50. Wind Loads where 0.00256 reflects mass density of air and unit conversions. V = Basic 3-second gust wind speed (mph) at a height of 33 ft. above the ground in open terrain. (1:50 chance of exceedance in 1 year) Kz = Exposure coefficient (bldg. ht., roughness of terrain) kzt = Coefficient accounting for wind speed up over hills I = Importance factor