260 likes | 280 Views
Invited lecture presentation at the 18th World Congress of the International Society on Toxinology, University of Oxford, UK, SEptember 2015
E N D
‘Toxicovenomics’ towards an integrative view of compositional and functional aspects of snake venoms Invited lecture presented at the 18th World Congress of the International Society on Toxinology, University of Oxford, UK, September 2015 Bruno Lomonte
Proteomics and snake venom composition • impact of proteomic tools upon venom composition • diverse analytical strategies for protein identification • combination with other ‘-omic’ tools (transcriptomics, genomics, ...)
Snake venom proteomes • growing number of venom proteomes • increasingly sensitive methods • study of ‘scarce’ venoms from ‘uncommon’ species Cumulative number of species with venom proteomes studied Year
Viperidae ~ 329 Elapidae ~ 417 Colubridae ~ 840 S ~ 1586 Serpentes ~ 3,500 species Venom proteomes by family of snakes (~200) Elapidae Viperidae Colubridae
Gel-based strategies 2D-GE approach MS/MS analysis Gel-free (LC) strategies nano-flow LC Snake venom proteomes • early studies aimed at a thorough cataloguing of proteins • essentially qualitative information • identification frequency ≠ protein abundance • diverse analytical strategies
Venomics strategy + LC offline + 1D GE approach MS/MS analysis • A combined (LC-offline + 1D-gel) approach • estimates relative protein abundances • adds relevant biological significance to cataloguing Snake venomics: estimation of abundances
relative abundances provide key information to medical and biological significance • two hipothetical venoms consisting of the same components (A, B, C)
Proteomic profiles of the venoms of Costa Rican snakes Lomonte et al. (2014) J. Proteomics 105, 323
Proteomic profiles of the venoms of Costa Rican snakes Lomonte et al. (2014) J. Proteomics 105, 323
Genus-wide venomic profiling: Agkistrodon spp. A. c. phaeogaster A. c. contortrix A. p. leucostoma A. c. laticinctus A. c. mokasen A. p. piscivorus A. c. pictagaster A. p. conanti A. taylori A. b. howardgloydi A. b. bilineatus Lomonte et al. (2014) J. Proteomics 96, 103
Further collaborative ‘venomics’ studies Crotalus s. culminatus Crotalus s. simus Porthidium lansbergii Micrurus mipartitus Bothrops ayerbei Micrurus dumerilii Bothrops punctatus Bothrops pirajai Bothrocophias campbelli
Venomics Antivenomics Toxicovenomics catalogue, + abundance, + antigenicity catalogue, + abundance, + functionality catalogue, + abundance Evolving strategies in venom analysis by proteomic tools Informative value catalogue Timeline
How to combine venomics with functional characterization? Toxicity
Pelamis platura (yellow-bellied sea snake) Lomonte et al. (2014) J. Proteomics 103, 137
Case studies Micrurus tener Mus musculus Conopsis lineata Bénard-Valle et al. (2014) Toxicon77, 6-15
black mamba Dendroaspis polylepis Naja kaouthia Aipysurus laevis Laustsen et al. (2015) J. Proteomics119, 126; Lausten et al. (2015) Toxicon99, 23; Laustsen et al.(2015), Toxicon in press
Dendroaspis polylepis Which are the main toxic components in mice?
LD50 (mg) Peak components Toxicity score (%/LD50) n.d. n.p. / nucleosides n.d n.p. / nucleosides n.d n.p. / nucleosides 0.08 3FTx 45.0 0.46 3FTx / Kun (dendrotoxin) 21.7 0.53 3FTx / Kun (dendrotoxin) 23.8 0.28 3FTx / Kun (dendrotoxin) 29.6 5.25 Kun (dendrotoxin) 4.6 3.76 3FTx / Kun (dendrotoxin) 1.7 4.92 3FTx / Kun (dendrotoxin) 0.5 4.38 3FTx / Kun (dendrotoxin) 0.8 >1.5 3FTx / Kun (dendrotoxin) <0.5 >5 3FTx <1 >2.5 3FTx <1.5 >1 3FTx >2.5 Kun (dendrotoxin) <0.5 >7.5 3FTx <0.5 >1 NGF <1 >5 3FTx <0.5 ? atypical Kun (dendrotoxin) n.d. >1.15 MP <1 >1 PDE <1 >0.3 HYA <1.5 n.d. MP n.d. n.d. MP n.d.
Aipysurus laevis Laustsen et al. (2015) Toxicon (in press)
Absorbance 215 nm (mU) 1000 2000 3000 0 0 10 1 20 2 3 4 30 5 6 40 9 8 7 10 11 12 13 17 14 Time (min) 50 18 15 16 60 70 19 80 20 90 LD50 (mg) % Peak/ component Toxicity score (%/LD50) 1 3FTx 0.07 21.8 334 2 3FTx 0.18 0.6 3.3 3 3FTx 0.13 2.0 15.3 4 3FTx 0.28 0.9 3.2 5 PLA2 >0.3 0.3 <1 6 PLA2 >0.5 0.5 <1 7 unk >0.25 0.2 <1 8 unk >0.5 0.4 <1 9 PLA2 >10 9.6 <1 10 PLA2 >7.5 6.3 <1 11 PLA2 >20 19.4 <1 12 PLA2 >6 6.0 <1 13 PLA2 >10 11.0 <1.1 14 PLA2 >2.5 2.5 <1 15 PLA2 >0.3 0.3 <1 16 PLA2 >0.25 0.2 <1 17 PLA2 3.05 3.6 1.2 18 CCM >2.5 11.6 <5 19 CRiSP >0.5 2.7 <1 20 CRiSP n.t. 0.1 n.t.
Toxicovenomics Recent studies have begun to explore the possibilities of combining the venom compositional data provided by 'venomics', with the toxicity screening of its components - a strategy that could be named 'toxicovenomics'
Toxicovenomics The value of the combined information provided by 'venomics' may be further expanded by integrating it with a functional assessment of the various venom peptides/proteins, in terms of their toxicity and other bioactivities
chromatography: denaturing of labile proteins • high chromatographic resolution under native conditions • in vitro surrogate methods for toxic activities/bioassays Challenges
This integrative approach has the potential to disclose the most clinically-relevant toxins within a particular venom It may provide a broader view on the biological and medical significance of snake venoms Toxicovenomics
Davinia Pla Libia Sanz Juan J. Calvete Andreas Laustsen Mahmood Sasa Julián Fernández José M. Gutiérrez Bruno Lomonte