1 / 39

Introduction to Integers: Addition, Subtraction, Multiplication, Division

This guide provides a comprehensive introduction to integers and operations like addition, subtraction, multiplication, and division. It includes examples and explanations to help understand integer arithmetic.

lilly
Download Presentation

Introduction to Integers: Addition, Subtraction, Multiplication, Division

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. @mm CD w#t]y pr]hrN@y\q} ym| g#tUvk\ a#w]v[v @h`w\ phw aAkyt apv amwn\n. r`j]w jyv}r (v]@X\S gN]w p[h[N[) 0718005616 @h`\ 0343341702 RajithaJayaweera (tel:0718005616 or 0343341702) rajithaj74@gmail.com Exit Next

  2. INTEGER n]K]l gN]wy r`j]w jyv}r (v]@X\S gN]w p[h[N[) 0718005616 @h`\ 0343341702 Next Exit

  3. r`j]w jyv}r • XY} Er~mk}r~w] p]r]@vn • @p`l\vw\w pAsl • @k`l\l[p]t]y • @k`LB 03 • 0718005616 @h`\ 0343341702 Exit Next

  4. r`j]w jyv}r • l[m|b]N] • @kt]v]\\l vw\w • n`@g`d • kUwr rajithaj74@gmail.com 0718005616 @h`\ 0343341702 Exit Next

  5. n]K]l Integer n]K]l h#Q]n\v}m Introduction of integers n]K]l ekw; k]r}mAddition of integers n]K]l ad[ k]r}m Subtraction of integers n]K]l g;N k]r}m Multiplication of integers n]K]l @bq}m Division of integers Exit

  6. n]K]l h#Q]n\v}m Introduction of integers En @h`\ M^N s]yU p{r~N sAK&` n]K]l yn[@vn\ hÀ[n\vy] uq` ......-3,-2,-1,0,1,2,3,...... pYE`n@mn[v

  7. n]K]l ekw; Addition of integers (1) sm`n lk;N sh]w n]K]l ekw; k]r}m (2) asm`n lk;N sh]w n]K]l ekw; k]r}m pYE`n@mn[v

  8. (1) sm`n lk;N sh]w n]K]l ekw; k]r}m sm`n lk;N sh]w n]K]l ekw; k]r}@m|q} agyn\ ekw; kr em lk;Nm @y`qn\n. pYE`n@mn[v g#tU

  9. sm`n lk;N sh]w n]K]l ekw; k]r}m (1) (+2) + (+3) (2) (-5) + (-3) (3) (-4) + (-8) (4) (-5) + (-2) + (-2) p]L]w;r p]L]w;r p]L]w;r p]L]w;r pYE`n@mn[v

  10. (1) (+2) + (+3)= (+5) @h\w;v pYE`n@mn[v

  11. (2) (-5) + (-3) =(-8) @h\w;v pYE`n@mn[v

  12. (3) (-4) + (-8) =(-12) @h\w;v pYE`n@mn[v

  13. (4) (-5) + (-2) + (-2) =(-7) + (-2) =(-9) @h\w;v pYE`n@mn[v

  14. (2) asm`n lk;N sh]w n]K]l ekw; k]r}m asm`n lk;N sh]w n]K]l ekw; k]r}@m|q} v]X`l ag@yn\ k;d` agy ad[kr v]X`l agy iq]r]@y\ a#w] lk;N @y`qn\n. g#tU pYE`n@mn[v

  15. asm`n lk;N sh]w n]K]l ekw; k]r}m (1) (-5) + (+2) (2) (+8) + (-3) (3) (-7) + (+4) p]L]w;r p]L]w;r p]L]w;r pYE`n@mn[v

  16. (-5) + (+2) = (-3) @h\w;v pYE`n@mn[v

  17. (2) (+8) + (-3) =(+5) @h\w;v pYE`n@mn[v

  18. (3) (-7) + (+4) =(-3) @h\w;v pYE`n@mn[v

  19. n]K]l ad[ k]r}m Subtraction of integers • (1) @mh]q} pLm[vad[ k]r}m ekw;vk\ @ls l]yn\n • (2) enm| ad[ k]r}m @vn[vt+ lk;n @y`q` It p]t[ps a#w] n]K]l@y\ lk;N m`r# krn\n. • (3) q#n\ n]K]l ekw; krn a`k`ryt n]K]l vl lk;n sm`nq asm`nq#y] bln\n. • (4) lk;N[ sm`n nm| agyn\ ekw; kr em lk;Nm @y`qn\n • (5) lk;N[ asm`n nm| v]X`l ag@yn\ k;d` agy ad[kr v]X`l agy iq]r]@y\ a#w] lk;N @y`qn\n. uq` pYE`n@mn[v ax&`s

  20. phw n]K]lekw;vk\ @ls l]v}m • uq` 2 - (-3) • = 2 + (+3) pYE`n@mn[v g#tU

  21. phw n]K]lekw;vk\ @ls l]yn\n. (1) (-3) - (+2) (2) (+4) - (-1) (3) (+5) - (+3) p]L]w;r p]L]w;r p]L]w;r pYE`n@mn[v

  22. (1) (-3) - (+2) • = (-3) + (-2) pYE`n@mn[v

  23. (2) (+4) - (-1) = (+4) + (+1) pYE`n@mn[v

  24. (3) (+5) - (+3) = (+5) + (-3) pYE`n@mn[v

  25. n]K]l g;N k]r}mMultiplication of integers n]K]l g;N k]r}@m|q} pLm[v agyn\ g;Nkr phw pr]q] lk;N[q g;Nkr l]yn\n. (+) x (+) = (+) (-) x (-) = (+) (+) x (-) = (-) (-) x (+) = (-) ax&`s pYE`n@mn[v

  26. phw n]K]l g;N krn\n. p]L]w;r (1) (+2) x (-5) (2) (-3) x (-5) (3) (-4) x (+6) (4) (-3) x (-8) x 0 (5) 2 x (-4) x 3 (6) (-5) x 3 x (-1) p]L]w;r p]L]w;r p]L]w;r p]L]w;r p]L]w;r pYE`n@mn[v

  27. (1) (+2) x (-5) = (-10) pYE`n@mn[v

  28. (2) (-3) x (-5) = (+15) pYE`n@mn[v

  29. (3) (-4) x (+6) = (-24) pYE`n@mn[v

  30. (4) (-3) x (-8) x 0 =24 x 0 = 0 pYE`n@mn[v

  31. (5) 2 x (-4) x 3 • =(-8) x 3 • =(-24) pYE`n@mn[v

  32. (6) (-5) x 3 x (-1) = (-15) x (-1) = 15 pYE`n@mn[v

  33. n]K]l @bq}m Division of integers n]K]l @bq}@m|q}} pLm[v agyn\ @bq` phw pr]q] lk;N[q @bq` l]yn\n. (+) ÷ (+) = (+) (-) ÷ (-) = (+) (+) ÷ (-) = (-) (-) ÷ (+) = (-) ax&`s pYE`n@mn[v

  34. phw n]K]l @bqn\n. (1) (-12) ÷ 2 (2) (-18) ÷ (-3) (3) (+21) ÷ 7 (4) (+48) ÷ (-6) (5) (+25) ÷ (-5) p]L]w;r p]L]w;r p]L]w;r p]L]w;r p]L]w;r pYE`n@mn[v

  35. (1) (-12) ÷ 2 • = (-6) @h\w;v pYE`n@mn[v

  36. (2) (-18) ÷ (-3) • = (+6) @h\w;v pYE`n@mn[v

  37. (3) (+21) ÷ 7 =(+3) @h\w;v pYE`n@mn[v

  38. (4) (+48) ÷ (-6) =(-8) @h\w;v pYE`n@mn[v

  39. (5) (+25) ÷ (-5) =(-5) @h\w;v pYE`n@mn[v

More Related