1 / 32

Technology Transfer Through Farmer Field School in Indonesia

Technology Transfer Through Farmer Field School in Indonesia. Aunu Rauf 1 , Nugroho Wienarto 2 , BM Shepard 3 , GR Carner 3 , MD Hammig 3 , EP Benson 3 , G Schnabel 3. 1 Bogor Agricultural University - Indonesia 2 FIELD Indonesia Foundation - Indonesia 3 Clemson University - USA.

licia
Download Presentation

Technology Transfer Through Farmer Field School in Indonesia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Technology Transfer Through Farmer Field School in Indonesia Aunu Rauf1, Nugroho Wienarto2, BM Shepard3, GR Carner3, MD Hammig3, EP Benson3, G Schnabel3 1 Bogor Agricultural University - Indonesia 2 FIELD Indonesia Foundation - Indonesia 3 Clemson University - USA

  2. Outline of Presentation • History of Farmer Field School • Process of IPM Farmer Field School • FFS Follow-up Activities • Some Impact Studies • Closing Remarks

  3. History of Farmer Field School Outbreak of BPH during 1970-1980s • Prophylactic, calendar- • based spraying • Heavy subsidy on • pesticides (80%)

  4. History of Farmer Field School IPM Policy • Presidential Decree (1986) banned • the use of 57 pesticide formulation • in rice production • Phased-out of pesticide subsidies • Established IPM training for farmers • (Farmer Field School)

  5. History Farmer Field School What is a Farmer Field School • FFS is is a group extension method based on adult education program that utilizes discovery learning and participatory techniques. • Composed of groups of 25-30 farmers who meet regularly during the course of the growing seasons. • FFS aims to increase the capacity of groups of farmers to carry out experiments in their own fields. • The facilitator is called a field leader (FL). The FLs are trained in both technology and facilitation skill in a program called a Training of Trainers (TOT).

  6. History of Farmer Field School Four Major Principles of IPM FFS • Grow a healthy crop • Resistant varieties, proper fertilzers, water and soil management, etc • Healthy crop can resist diseases and compensate for damage • Observe fields regularly • To assess crop development, diseases, insect pest population, and natural enemies. • Conserve natural enemies of crop pests • Abundance of natural enemies in the field • Avoid the use of pesticides that kill natural enemies • Farmers understand ecology and become experts in their own field • Make decisions based on observations and analysis of the field situation

  7. Process of Farmer Field School Agroecosystem Analysis • Field visit / field observations • Go to the field in subgroups • (5 farmers per subgroup) • Choose 10 plants randomly • Observe plant, pests, natural enemies, diseases, weeds, weather etc

  8. Process of Farmer Field School Agroecosystem Analysis • Drawing • Each subgroup presents their observations and analysis in drawing. • plant • weather • disease symptom • pests • natural enemies • water level

  9. Process of Farmer Field School Agroecosystem Analysis • Presentation and Discussion • Each subgroup presents their analysis • Group discussion • Decision about pest control measure is made • Facilitator will facilitate the discussion

  10. Process of Farmer Field School Supporting IPM Field Studies • IPM validation trials • IPM Practices vs Farmer Practices • Conducted on 1000 m2 • plot, each 500 m2

  11. Process of Farmer Field School Supporting IPM Field Studies • Crop compensation • To demonstrate that • crop plants can • compensate for some • damage by producing • new leaves or shoots

  12. Process of Farmer Field School Supporting IPM Field Studies • Field cages • To demonstrate how natural enemies keep pest population under control

  13. Process of Farmer Field School Supporting IPM Field Studies • Plastic bagging • To demonstrate how • enclosing cacao pod with • the pastic bag can prevent • attack from pod borer

  14. Process of Farmer Field School Supporting IPM Field Studies • Side-grafting • Farmers learn how to make a side-grafting on cacao

  15. Process of Farmer Field School Supporting IPM Field Studies • Use of insect traps • Farmers learn how to monitor insect population using traps

  16. Process of Farmer Field School Supporting IPM Field Studies • Insect zoo • To study life cycle of insects • To study feeding behavior of insects • To study predator and parasitoids

  17. Process of Farmer Field School Group Dynamics • To foster cooperation and • togetherness within the group • To sharpen farmer communication • and organizing skills • A variety of team building • games and exercises employed • during the training

  18. Process of Farmer Field School Ballot Box • FFS starts with a ballot-box pretest • of knowledge and ends with a • posttest • A simple tool to measure the level • of a farmer’s knowledge on an • agroecosystem • Questions focus on: • recognition of pests, natural • enemies, diseases • recognition of damage from • pests and diseases • management of pests and diseases • etc

  19. Process of Farmer Field School Field Day • At the end of FFS season • To show the results of FFS to • other farmers, agricultural staff, • local government officials. • IPM plot vs Farmer Practice • plot • Other field experiments • Insect zoo (pests and natural • enemies)

  20. Follow-up Activities Farmer-to-Farmer FFS • One-week training is conducted for farmer trainers prior to organize farmer-led FFS; • Curriculum of TOT includes facilitation and management skills for organizing an FFS, and review and discuss background of FFS topics, e.g. agro-ecosystem analysis. • Farmer-to-Farmer FFS are implemented in the same way, except the trainers are farmers. • Key elements in the development of IPM over large areas.

  21. Follow-up Activities Farmer IPM Field Studies • To develop farmer’s own knowledge and technologies; • To develop a capacity to find an answer/proof or to test a method; • To develop farmer’s capacity on research and its networking with research-related institutions. • Making plant extracts for botanical • pesticides and testing the effectiveness

  22. Follow-up Activities Farmer IPM Field Studies • Study on effects of plastic mulch • Study on effects of bamboo staking • in potatoes

  23. Follow-up Activities Farmer IPM Field Studies • Production and application of Trichoderma

  24. Development of FFS • Modified to train farmers of other crops • The training methodology was not changed. • FFS - IPM • Food crops • Palawija crops • Vegetable crops • Fruit crops • Industrial crops • FFS-ICM • Rice • Soybean • Corn • FFS – GAP • FFS - Climate • Funding Sources • Self financed FFS • District government • Pronvincial government • Central government • World Bank • USAID • ADB • ACIAR • etc

  25. Some Impact Studies FFS in Rice • SEARCA (1999): • Use of insecticides was 35% less for FFS farmers than • for non-FFS farmers • Yield of rice was 7.9 % higher for FFS farmers than for • non-FFS farmers • FFS farmers spent 21% less on pesticides, 12% more • on fertilizers and 4% more on labor than non-FFS farmers • FFS farmers had 5% lower production costs than • non-FFS farmers • FFS farmers had higher knowledge scores on pests, • natural enemies and pesticides than non-FFS farmers.

  26. Some Impact Studies FFS in Rice • Feder et al 2003: • Yields decreased from 1991-1999 for FFS farmers and non-FFS • farmers • Pesticide expenditure increased for FFS farmers and non-FFS • farmers • No significant effect of training on the change in yield or pesticide • expenditure between FFS farmers and non-FFS farmers

  27. Some Impact Studies FFS in Rice • Yamazaki S and Resosudarmo BP (2006) • [Utilizing the same data set as Feder et al (2004)] • Substantial positive impacts on agricultural productivities by the • FFS for both farmers who participated in the FFS and those who • indirectly obtained the new knowledge • Farmers who participated in the FFS and those who indirectly • obtained the new knowledge reduced their spending on pesticides • and conducted this practice over time • Farmers’ performance is positively-spatially correlated between • neighbors in the same village. This positively supports the • existence of farmer-to-farmer knowledge diffusion.

  28. Some Impact Studies FFS in Rice • Mariyono J (2009): • Performance of FFS implementation was not as good as expected • On average, the proportion of highly satisfactory FFS was only 32% • Efforts to improve the performance of FFS implementation • resulted in an increase in the number of highly satisfactory FFSs • (50%) by the end of the project • The impact of IPM technology on the reduction in pesticide use • was significantly dependent on the performance of the FFS • The better performance of the FFSs, the higher the level of rice • production and the lower the level of pesticide use

  29. Some Impact Studies FFS in Vegetables • Londe, Hammig, Rauf (1999): • The coefficient for IPM training (FFS) were positive and highly • significant suggesting the overall effectiveness of training to be • positive • Farmers with IPM training were most likely to adopt sustainable • practices.

  30. Some Impact Studies FFS in Estate Crops • Hutabarat et al. (2004): • IPM farmers had better ability to recognize insect natural enemies. • IPM farmers earned a higher profit than non-IPM farmers • IPM farmers used less pesticides as opposed to non-IPM farmers

  31. Closing Remarks • Extending FFS program to other crops and activities should be accompanied by the quality assurance of its implementation

  32. Thank You

More Related