html5-img
1 / 22

PAX

PAX. Status and future plan. June 26, 2012 | Alexander Nass. Overview. COSY. PAX. History. 2006 transport of the HERMES polarized target ( Atomic Beam Source ( ABS ) and Breit-Rabi Polarimeter ( BRP )) to Jülich

lacy
Download Presentation

PAX

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PAX Status and future plan June 26, 2012 | Alexander Nass

  2. Overview COSY PAX SPIN Physics Workshop in Gatchina

  3. History 2006transportofthe HERMES polarizedtarget (Atomic Beam Source (ABS) and Breit-Rabi Polarimeter (BRP)) to Jülich 2006-2009rebuildingofthe ABS and BRP fortheuseat COSY / AD and design & constructionofthetargetchamber 2008-2012Constructionof an openablestoragecell 2009 Installation ofthelow-βsection, commissioning 2010 Installation ofthetargetsectionat COSY, commissioning 2010-2011 Design, constructionandinstallationofthe NEG pump attachedtothetargetchamber 2011transverseSpin Filter experimentat COSY SPIN Physics Workshop in Gatchina

  4. The polarized target Productionof a polarizedatomic beamby an ABS Increaseofthetargetdensitybymeansof a storagecell Analysis oftargetpolarizationby a BRP and TGA Calibrationofthe BRP by pp-scatteringdata ABS BRP The polarized target in LKW-Schleuse SPIN Physics Workshop in Gatchina

  5. The target chamber Accomodationofthe (openable) storagecellandmultipurposedetector in a compact design Support ofthetargetholdingfieldcoils High pumpingspeedfortarget gas Fast shut-off valvesto separate andprotect COSY vacuum Large flangestoinstallthecompletedetector / targetcellsetup in oneoperation on a railsystem Fixed flowlimiterstoreduce gas flowintotheadjacentsections SPIN Physics Workshop in Gatchina

  6. The (openable) storage cell Storage cell necessary to increase target gas density up to 1014 atoms/cm2 Storage cell walls should suppress recombination and depolarization Openable storage cell to allow the uncooled AD beam to pass Teflon foil walls to detect low energy recoils and suppress recombination and depolarization Fixed cell used in the COSY experiments due to problems with the density in the openable cell SPIN Physics Workshop in Gatchina

  7. The low-β section Low-β section necessary to increase the acceptance angle to about 6 mrad Small diameter COSY proton beam allows the use of a storage cell and therefore an increased filtering rate SPIN Physics Workshop in Gatchina

  8. Commissioning of the low-β section and machine development Injection of COSY beam through the fixed cell possible Using frame system acceptance angle measured to be 6.1 mrad Established sufficient long beam lifetimes > 7000s without target gas with 1010 protons at the desired energy of 49.3 MeV The frame system SPIN Physics Workshop in Gatchina

  9. The NEG pump High pumping speed in the target chamber necessary to reduce the pressure of the unpolarized H2 / D2 gas in the target chamber and adjacent beam line sections Therefore allowinglonger beam lifetimes of the COSY proton beam Commercially available NEG cartridges mounted into a bakeable stainless steel box • Box is closeable with a jalousie to protect the target cell and detector from the heat when NEG is activated (T=250…400 °C) • Measurements during the spin filter beam time showed pumping speeds of 13000 l/s SPIN Physics Workshop in Gatchina

  10. Installation at COSY Installation ofthetargetsection in COSY in summer 2010 Modular systemtoremoveandinstallthetargetquickly Onesupportstructurefor ABS, BRP andtargetchamberwith NEG pump Railsystemforinstallationoftheflangewithtargetcellandfuturedetector SPIN Physics Workshop in Gatchina

  11. Density of the polarized target gas Intensity measurement of the ABS using an absolute baratron pressure measurementin the center on the storage cell in comparision with a calibrated flux from an unpolarized gas feed system IH1 = (6.1±0.3)·1016 H/s IH2 = (3.0±0.1)·1016 H2/s SPIN Physics Workshop in Gatchina

  12. Polarization of the target gas SPIN Physics Workshop in Gatchina

  13. Transverse Spin Filtering at COSY Successfulspinfilterexperiment in autumn 2011 8 weeksofdatataking All componentsworkedwellwithoutmajorproblemsat a high performancelevel Preliminary Preliminaryresultforthespinfilteringcrosssectionforppinteraction Resultis in goodagreementwiththetheoreticalpredictionsandconfirmsthepresentunderstandingoftheunderlyingprocesses For more information see talk of D.Oellers SPIN Physics Workshop in Gatchina

  14. Future plan September 2012 TRIC testexperimentusingthe PAX-target October 2012Removalofthe PAX-target from COSY ring 2012-2013ModificationandcommissioningofthepolarizedinternaltargetforrunningwithH and D 2012-2013 Design andconstructionof a multipurposedetector 2013 Installation oftheSiberianSnakeat COSY PAX sitefor ANKE experiment(s) with longitudinal beam polarization 2014 Installation oftheSiberianSnakeat COSY ANKE siteandreinstallationofthe PAX targetwithdetector 2014-2015 Longitudinal Spin Filter experimentatCOSY 2015-2017 TRIC andpdbreakupexperimentswith PAX 20?? Spin filteringwithantiprotonsat AD/CERN or FAIR SPIN Physics Workshop in Gatchina

  15. Modifications on the polarized target TRIC andpdbreakupneedD target Preparationofhardwareandsoftwarefor D Comissioningoftargetsectionwith D outside COSY Deuterium p filteringrequiresH & D in shortsequence Prototype ofnew type RF cavity (dual cavity) was producedandtestedwith RF-generator bridge Hastobetestedwith H / D beam Hydrogen SPIN Physics Workshop in Gatchina

  16. The Multipurpose Detector Silicon stripdetectorwith3 layers Readoutelectronicsconnecteddirectly in vacuum Liquid coolingsystemfordetectorsandelectronics Openablecellincluded in the design Completesetupattachedtooneflangeofthetargetchamber For more information see talk of C.Weidemann SPIN Physics Workshop in Gatchina

  17. Openable Flow Limiters Flow limitersnecessarytoreduceflowof hydrogen (target) gas intoadjacent beam tubeswith high β-functionsofthe (anti)proton beam High gas pressuresleadtoreduced beam lifetimesofthe (anti)proton beam Openableflowlimitersnecessarysinceuncooled (anti)proton beam is large (upto 100mm diameter) After beam cooling (diameter <10mm), closingofflowlimiterstoacceptancelimitandinjectionoftarget gas SPIN Physics Workshop in Gatchina

  18. The Siberian Snake Will allowfor flexible use in twolocations Fast ramping (< 30 s) withinjectionofPy Cryogenefreesystem Snakeshouldbeavailable in 2012 / 2013 ANKE ANKE PAX PAX SPIN Physics Workshop in Gatchina

  19. Preparations for PAX @ AD/CERN Siberian snake Electron cooler PAX target section SPIN Physics Workshop in Gatchina

  20. Preparations for PAX @ AD/CERN Target chamber: Detector system + storage cell Atomic Beam Source Breit-Rabi Polarimeter Six additional quadrupoles SPIN Physics Workshop in Gatchina

  21. Preparations for PAX @ AD/CERN PAX low-β section for AD ready for installation SPIN Physics Workshop in Gatchina

  22. Collaboration members in PAX@COSY W.Augustyniak r, L. Barion c, S. Barsov d, U. Bechstedt a,b, P. Benati c, S. Bertelli c, V. Carassiti c, D. Chiladze e, G. Ciullo c, M. Contalbrigo c, P.F. Dalpiaz c, S. Dymov g,h, R. Engels a,b, W. Erven i,b, M. Fiorini c, M.Gaisser a,b, R. Gebel a,b, P. Goslawski j, K. Grigoryev d,a,b, G. Guidoboni c, A. Kacharava a,b, A. Khoukaz j, A. Kulikov h, G. Langenberg a,b, A. Lehrach a,b, P. Lenisa c, N. Lomidze e, B. Lorentz a,b, G. Macharashvili h, R. Maier a,b, B. Marianski r, S. Martin a,b, D. Mchedishvili e, S. Merzliakov h,a,b, I.N. Meshkov h, H.O. Meyer k, M. Mielke j, M. Mikirtychiants d,a,b, S. Mikirtychiants d,a,b, A. Nass g,a,b, M. Nekipelov a,b, N.N. Nikolaev a,b,l, M. Nioradze e, D. Oellers a,b,c, M. Papenbrock j, L. Pappalardo c, A. Pesce c, A. Polyanski a,b,f, D. Prasuhn a,b, F. Rathmann a,b, J. Sarkadi a,b, R. Schleichert a,b, A. Smirnov h, H. Seyfarth a,b, V. Shmakova h, M. Statera c, E. Steffens g, H.J. Stein a,b, H. Stockhorst a,b, H. Straatmann m,b, H. Ströher a,b, M. Tabidze e, G. Tagliente n, P. Thorngren Engblom o, S. Trusov p,q, A.Trzcinski r, Y. Valdau a,b,d, A. Vasilyev d, Chr. Weidemann a,b,c, K.M.von Würtemberg o, P. Wüstner i,b, P. Zupranski r aInstitut für Kernphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany bJülich Center for Hadron Physics, 52425 Jülich, Germany cUniversità di Ferrara and INFN, 44100 Ferrara, Italy dSt. Petersburg Nuclear Physics Institute, 188350 Gatchina, Russia eHigh Energy Physics Institute, Tbilisi State University, 0186 Tbilisi, Georgia fInstitute for theoretical and experimental physics, 117218 Moscow, Russia gPhysikalisches Institut II, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany hLaboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna, Russia iZentralinstitut für Elektronik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany jInstitut für Kernphysik, Universität Münster, 48149 Münster, Germany kPhysics Department, Indiana University, Bloomington, IN 47405, USA lL.D. Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia mZentralabteilung Technologie, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany nINFN, Sezione di Bari, 70126 Bari, Italy oRoyal Institute of Technology, Physics Department, SE-10691 Stockholm, Sweden pInstitut für Kern- und Hadronenphysik, Forschungszentrum Rossendorf, 01314 Dresden, Germany qSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia rNational Centre for Nuclear Reserch, 00681 Warsaw, Poland SPIN Physics Workshop in Gatchina

More Related