1 / 22

Experimental data: Z. Strugalski et al. JINR preprints, E1-81-578 (1981),

Validation of G4 Hadronic Models for π Xe Experimental Data in the Region Plab=2 – 8 GeV/c V. Uzhinsky (CERN and LIT JINR). Experimental data: Z. Strugalski et al. JINR preprints, E1-81-578 (1981), E1-81-803 (1981).

Download Presentation

Experimental data: Z. Strugalski et al. JINR preprints, E1-81-578 (1981),

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Validation of G4 Hadronic Models for πXe Experimental Data in the Region Plab=2 – 8 GeV/cV. Uzhinsky (CERN and LIT JINR) Experimental data: Z. Strugalski et al. JINR preprints, E1-81-578 (1981), E1-81-803 (1981). Reaction Chamber Beam #Photos #Selected Instit. Pi++Xe, 26 liters, 2.34, 20000, 6110, JINR Pi-+Xe, 180 liters, 3.5, 40000, 5487, ITEP Pi-+Xe, 26 liters, 5.0, 6000, 1468, ITEP Pi-+Xe, 26 Liters, 8.0, 9000, 1994, ITEP Protons: E= 20/30 – 250/300/400 MeV; Neutrons ? Pi+ : E> 0. – 100 MeV; Pi- : E>10/15 -60 MeV: Pi0->2γ: E>0. MeV. Measured: Multiplicity distributions of P, π+-0, π0; Multiplicity correlations. 1

  2. Low energy G4 models: Bertini, Binary, LEPAR, QGS+Binary Multiplicity distributions of protons: Bertini model works well below 5 GeV, QGS+Bic above 5 GeV. 2

  3. Low energy G4 models: Bertini, Binary, LEPAR, QGS+Binary Multiplicity distributions of Pi+-0: 3 Bertini and Binary models works well below 5 GeV, QGS+Bic above 5 GeV.

  4. Low energy G4 models: Bertini, Binary, LEPAR, QGS+Binary Multiplicity distributions of Pi0: 4

  5. Low energy G4 models: Bertini, Binary, LEPAR, QGS+Binary Multiplicity correlations: Pi+-0 - Protons 5 Bertini model works well, but there is too strong absorption.

  6. Low energy G4 models: Bertini, Binary, LEPAR, QGS+Binary Multiplicity correlations: Pi0 - Protons 6 Bertini model works reasonable well.

  7. Low energy G4 models: Bertini, Binary, LEPAR, QGS+Binary Multiplicity correlations: Protons –Pi+-0 7 Bertini model works reasonable well below 5 GeV.

  8. Low energy G4 models: Comparison of G4 models and Dubna Cascade Model Multiplicity distribution: Protons 8 Bertini model works as DCM.

  9. Low energy G4 models: Comparison of G4 models and Dubna Cascade Model Multiplicity distribution: Pi+-0 9 DCM is not perfect!

  10. Low energy G4 models: Improvement of the Bertini model The most important parameters – absorption cross section of meson by di-nucleons (π+(NN)->NN) geant4-09-01-ref-02/source/processes/hadronic/models/cascade/cascade/src grep -i absorptionCros * ------------------------- G4BertiniNucleiModel.cc: abs_sec = absorptionCrosSection(ekin, ptype); // PP G4BertiniNucleiModel.cc: abs_sec = absorptionCrosSection(ekin, ptype); // PN G4BertiniNucleiModel.cc: abs_sec = absorptionCrosSection(ekin, ptype); // NN G4CascadSpecialFunctions.cc:G4double G4CascadSpecialFunctions::absorptionCrosSection(G4double G4NucleiModel.cc: abs_sec = absorptionCrosSection(ekin, ptype); // PP G4NucleiModel.cc: abs_sec = absorptionCrosSection(ekin, ptype); // PN G4NucleiModel.cc: abs_sec = absorptionCrosSection(ekin, ptype); // NN 10

  11. Low energy G4 models: Improvement of the Bertini model The most important parameters – absorption cross section of meson by di-nucleons (π+(NN)->NN) G4CascadSpecialFunctions.cc --------------------------------------------- G4double G4CascadSpecialFunctions::absorptionCrosSection(G4double e,int type) { G4int verboseLevel = 2; if (verboseLevel > 3) { G4cout << " >>> G4CascadSpecialFunctions::absorptionCrosSection type:" << type <<G4endl; } const G4double corr_fac = 0.1; // 0.2; // Uzhi 7.11.08 G4double csec = 0.0; if (e < 0.3) { csec = 0.1106 / std::sqrt(e) - 0.8 + 0.08 / ((e - 0.123) * (e - 0.123) + 0.0056); } else if (e < 1.0) { csec = 3.6735 * (1.0 - e) * (1.0 - e); }; if (csec < 0.0) csec = 0.0; if (verboseLevel > 2) { G4cout << " ekin " << e << " abs. csec " << corr_fac * csec << G4endl; } return corr_fac * csec; } 11

  12. Low energy G4 models: Improvement of the Bertini model Multiplicity distribution: Protons 12 There is enough space!

  13. Low energy G4 models: Improvement of the Bertini model Multiplicity distribution: Pi+-0 13 There is enough space!

  14. Low energy G4 models: Improvement of the Bertini model Multiplicity correlation: Pi+-0 - Protons 14 The Bertini model is improved below 5 GeV!

  15. Low energy G4 models: Improvement of the Bertini model Multiplicity correlation: Protons – Pi+-0 15

  16. High energy G4 models: HEPAR, QGSP, QGS_Bic, QGSC, FTFP Multiplicity distributions: Protons 16 QGS_Bic is well above 5 GeV. QGSC works well!

  17. High energy G4 models: HEPAR, QGSP, QGS_Bic, QGSC, FTFP Multiplicity distributions: Pi+-0 17 QGS_Bic is well above 5 GeV. QGSC does not work!

  18. High energy G4 models: HEPAR, QGSP, QGS_Bic, QGSC, FTFP Multiplicity correlations: Pi+-0 - Protons 18 Only QGS_Bic works well above 5 GeV.

  19. High energy G4 models: FTFP+Binary Multiplicity distributions: Protons 19 The combination works well above 3 GeV.

  20. High energy G4 models: FTFP+Binary Multiplicity distributions: Pi+-0 20 There is not enough absorption in the combination.

  21. High energy G4 models: FTFP+Binary Multiplicity correlations: Pi+-0 - Protons 20 There is not enough absorption in the combination.

  22. Conclusion 1. The Bertini model works well below 5 GeV. It can be improved. It works as well as Dubna cascade model. 2. There is not enough pion absorption in the Binary model. 3. QGS+Binary works well above 5 GeV. 4. FTF+Binary is well above 3 GeV. If the Binary model will be improved, the combination will work better. 5. LEPAR and HEPAR can not be applied for such data. Questions: Who was busy with a tuning of the absorption? Are there any restrictions on the tuning? How to improve the Binary cascade model? 21

More Related