1 / 31

Student Lecture on Neutrino Detectors

Student Lecture on Neutrino Detectors. Basics : Neutrino Source & Interactions Survey of Detection Techniques Projects. Experimentalists. Theorist. Henry T. Wong / 王子敬 Academia Sinica / 中央研究院 @ THU / 清華大學 November 2002. Nobel Prize in Physics (2002) 50% for n astrophys. :.

kpennington
Download Presentation

Student Lecture on Neutrino Detectors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Student Lecture onNeutrino Detectors • Basics : Neutrino Source & Interactions • Survey of Detection Techniques • Projects Experimentalists Theorist Henry T. Wong / 王子敬 Academia Sinica / 中央研究院 @ THU / 清華大學 November 2002

  2. Nobel Prize in Physics (2002)50% for n astrophys. : Ray. Davis Jr. (U. Penn) : “Classic” Chlorine Expt. Masatoshi Koshiba小柴昌俊(U. Tokyo) : Kamiokande & SuperK Citations leave room for future prizes on n physics !!! • 50% to Riccardo Giacconi, in X-Ray Astronomy

  3. Neutrino History • 1914: continuous b-spectra (Chadwick) • 1930: postulation of neutrinos (Pauli) • 1934: theory of b-decay (Fermi) calculation of s(np) (Bethe,Peierls) • 1956: observartion reactor ne(Reines,Cowan) • 1957: measurement of n helicity (Goldhaber) • 1962: discovery of accelerator nm(BNL) • 1968: observation of solar neutrinos (Davis) • 1974: discovery of weak neutral currents (CERN) • 1987: observation of supernova SN1987a n’s (IMB,Kamiokande) • 1989: three families of light neutrinos (CERN) • 1998: evidence of atmospheric neutrino oscillation (Super-Kam., …) • 2000: observation of nt(Fermilab) • 2001: evidence solar neutrino oscillation (SNO+SK+GALLEX ……)

  4. Neutrino Sources Observed window • n‘s everywhere: 300 per c.c. • from sun, supernovae, cosmic rays, reactors, accelerators, astrophysical sources, & relic Big Bang …

  5. Neutrino Physicist :

  6. Cross Sections Strong Electro-magnetic • Challenges of Neutrino Experiments : “How to Beat the Small Cross-Section?” i.e.By building Massive Detectors  while keeping cost/background Low ! Weak l(H2O)  250 light years ! BUT ….. En~ 1015 eV, L~Earth’s diameter

  7. Neutrino Detection : Summary • ※ 0.1-1 keV Neutrinos: • R&D:Cryogenic techniques ※ keV-MeV Neutrinos: • Proven: Radiochemical Techniques (solar neutrinos with Cl, Ga) • R&D : World efforts to develop counter/real time+energy methods • TEXONO on Reactor Neutrinos: Crystal Scintillator, Solid-State Device • ※ MeV-GeV Neutrinos: • R&D:Water Cherenkov Detector, Liquid Scintillator ※ GeV-TeV Neutrinos: • Proven: multi “high energy physics” detector systems ※ Astrophysical UHE Neutrinos: • Projects: Water/Ice Cherenov, Radio/Sound Waves, Cosmic-Ray Showers ..

  8. Radio-chemical Experiments – extracting 30 atoms from 30 tons (1029 atoms) of target materials. e.g. GALLEX: ne+71Ga71Ge, detected by EC X-rays

  9. Favorite Technique for Massive Detector:Cherenkov Radiation Permits one Sensor to see Area of Λ2atten E. Kearns, BU

  10. Super-Kamionkande ※ Water Cerenkov detector: 5k tons, viewed by 11,000+=50 cm PMTs in 1000 m underground site in central Japan ※ Physics: solar n, atmospheric n , long baseline accelerator n, proton decays .. ※ Accidents (PMTs imploded) Nov 01, 50% PMT data again end of 02 !!!

  11. SK >5 MeV e-ring from ne+e scattering The Sun IS Burning !!

  12. SK sub-GeV events from atmospheric n interactions m-ring from nmN e-ring from neN NC events with p02g

  13. Sudbury Neutrino Observatory (SNO) ※ Heavy Water Cerenkov detector: 1k ton, shielded by 7k ton of water viewed by 9456 PMTs located 2000 m underground in Canada. ※ Physics: Solar n …

  14. Actual measurements : only detect e- (a burst of light) : deconvolute the channels

  15. (also Cl, Ga, diff. E) (also SK) ( 5s effect )

  16. “Reines’ Reaction” for ne Detection :ne+pe++n • detect e+ then delayed n-capture • modern version : liquid scintillator (proton target) Discovery of Neutrinos , Reines 1956

  17. KamLAND • Long Baseline Reactor n (sensitive to 20% of world’s reactors !) • ave. flight path of 160 km • 1 kton liquid scintillator in old Kamiokande site • probe “LMA” for solar n • first results “any time” (only 5 years from approved !!!!)

  18. Accelerator n (1-10 GeV) Experiments : typical high energy physics techniques -  tracking m for Q/p,  calorimetry for em/had. Showers CC: nm+Nm-+X(shower) NC: nm+N nm +X(shower)

  19. CHORUS NOMAD

  20. Historic Bubble Chamber Neutrino Interaction Events nm+Nm-+X(shower) nm+e-nm+e- nm e- nm m-

  21. Modern “Bubble Chamber” : Liquid Argon Time Project Chamber

  22. DirectObservation of ntwith Nuclear Emulsion nN Interaction @ Emulsion Events from DONUT@FermiLab nt Field of View : 100 mmX120 mm

  23. Optical CherenkovNeutrino Telescope Projects Gaols: detect astrophys. n at 1012-1015 eV ANTARES La-Seyne-sur-Mer, France BAIKAL Russia NEMO Catania, Italy DUMAND Hawaii (cancelled 1995) NESTOR Pylos, Greece AMANDA, South Pole, Antarctica

  24. IceCube – km3n Telescope ※ To detect high energy (1012-1015 eV) n’s South Pole AMANDA IceCube

  25. IceCube 1015 eV ntN event (sim.) “Double Bang Event” AMANDA “upward-going” m event τ Decay length O(100 m) at 1015 eV ντ

  26. Radio Chenrenkov Detectors : for > 1015 eV neutrinos; target- Moon, Antartic Ice, Salt mine ……

  27. En > 1015eV : using surface of Earth as target

  28. En > 1019 eV: Detection of Cherenkov/florescence light from space

  29. Summary & Outlook • Neutrinos are important but strange objects history of n physics full of surprises ! • Strong evidenceS of massive n’s & finite mixings Physics Beyond the Standard Model ! • More experiments & projects coming up EVEN MORE EXCITEMENT ! • TEXONO is also a (modest) part of it

  30. How Science Makes Progresses ……….

More Related