1 / 25

Non-Zeeman Circular Polarization of 12 CO in SNR IC 443

Non-Zeeman Circular Polarization of 12 CO in SNR IC 443. Talayeh Hezareh ( Max-Planck-Institut für Radioastronomie ). o r… How I Caught M y D ata Lying to Me . H . Wiesemeyer ( MPIfR , DE ) M. Houde ( Western University, CA ) A. Gusdorf ( ENS, FR ) G. Siringo ( ESO, CL )

koko
Download Presentation

Non-Zeeman Circular Polarization of 12 CO in SNR IC 443

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Non-Zeeman Circular Polarization of 12CO in SNR IC 443 Talayeh Hezareh (Max-Planck-Institut für Radioastronomie) or… How I Caught My Data Lying to Me H. Wiesemeyer (MPIfR, DE) M. Houde (Western University, CA) A. Gusdorf (ENS, FR) G. Siringo (ESO, CL) C. Thum (IRAM, ES) MPIA, Heidelberg 21-05-13 Hezareh et al. 2013, A&A, submitted

  2. Tracing magnetic fields in (sub-)mm regime • Polarization in thermal emission of dust: B-field mapped in plane of sky: Bpos • Polarization in spectral lines of gas molecules: Zeeman effect : Blos Goldreich-Kylafis effect : Bpos • Ion-neutral spectral line-width comparison method: Li & Houde technique : Bpos MPIA, Heidelberg 21-05-13

  3. The Goldreich-Kylafis effect Alignment of molecules with magnetic field with Anisotropic optical depths and/or Anisotropic radiation field then Imbalance in 'π' and 'σ' populations so Linear polarization | or || to magnetic field _ (Goldreich& Kylafis1981) (Cortes, Crutcher, & Watson 2005) MPIA, Heidelberg 21-05-13

  4. Initial aimofthiswork • Nosuccessfulpriordetectionwith XPOL at IRAM 30-m • Detectthe Goldreich-Kylafiseffect in CO spectrallines in a regionsupposedlystrongerthandust • A regionwith a clearsourceofanisotropy, eithervelocitygradientsorradiationw.r.t. the B-field • A goodcandidate: SNR IC 443 MPIA, Heidelberg 21-05-13

  5. SNR IC 443 IC443-NE IC443-G IC443-B IC443-C LABOCA map @ 345 GHz (A. Gusdorf) MPIA, Heidelberg 21-05-13

  6. The Stokes parameters We mapped IC 443-G in CO (2-1) and (1-0) simultaneously at IRAM 30-m Obtained the 4 Stokes parameters with the correlatorpolarimeter XPOL: MPIA, Heidelberg 21-05-13

  7. CO(2-1) in IC 443-G Dec offset (arcsec) RA offset (arcsec) MPIA, Heidelberg 21-05-13

  8. Stokes maps of Mercury (1mm) Stokes Q Stokes I Instrumental Q = IIC443G * QMercury Instrumental U = IIC443G * UMercury Instrumental V = IIC443G * VMercury Stokes U Stokes V Instrumental Q, U, V at (0,0): 0.09-0.11%, side-lobes up to 3% polarized MPIA, Heidelberg 21-05-13

  9. CO polarizationmaps after IP correction CO(2-1) CO(1-0) MPIA, Heidelberg 21-05-13

  10. Dustpolarizationmap (PolKa) CO(1-0) Dust MPIA, Heidelberg 21-05-13

  11. Circularpolarizationof CO in Orion KL Observations performed with FSPPol at the CSO Circular polarization observed at same position where linear polarization was previously observed (Girart et al. 2004) (Hezareh & Houde 2010) (Houde, Hezareh et al. 2013) MPIA, Heidelberg 21-05-13

  12. Circularpolarizationof CO in IC 443-G circular polarization linear polarization MPIA, Heidelberg 21-05-13

  13. Not a detection of the Zeeman Effect Crutcheret al. 1999 OMC1n CN (N =1 0) at 113 GHz Zeeman splitting 2 HzμG-1 while CO (J =1 0) at 115 GHz Zeeman splitting 0.2 mHzμG-1 MPIA, Heidelberg 21-05-13

  14. Stokes V maps of CO CO(2-1) CO(1-0) MPIA, Heidelberg 21-05-13

  15. Linear tocircularpolarizationconversion - anisotropicresonant scattering Incident background radiation Scattered radiation Stokes parameters in the frame of foreground magnetic field Increase of ϕ decrease of u increase of v indifference of q (Houde, Hezareh et al. 2013) MPIA, Heidelberg 21-05-13

  16. Anisotropic resonant scattering relative phase shift : the Zeeman splitting : inclination angle of the magnetic field : the frequency of scattered photon : frequency of transition : density of CO molecules in lower state : the size of interaction region : the spontaneous emission coefficient (~ 10-6 s-1) : the incident (scattered) linear polarization energy density : resonant scattering integral over incident linear polarization profile MPIA, Heidelberg 21-05-13

  17. Polarization conversion experiment Convert Stokes V into U in the frame of foreground B-field: Make new maps with: MPIA, Heidelberg 21-05-13

  18. Difference in theanglesofdustand CO(2-1) polarizationvectors grey: before correction red: after correction MPIA, Heidelberg 21-05-13

  19. PolarizationcorrectionforCO(2-1) before after MPIA, Heidelberg 21-05-13

  20. Difference in theanglesofdustand CO(1-0) polarizationvectors grey: before correction red: after correction MPIA, Heidelberg 21-05-13

  21. PolarizationcorrectionforCO(1-0) MPIA, Heidelberg 21-05-13

  22. Upcoming Work • Calculate the magnetic field strength and ratio of turbulent to ordered components from the dispersion of the polarization angles in CO and dust maps (Hildebrand et al 2009; Houde et al. 2009) • Verify that the polarization transformation is indeed due to anisotropic resonant scattering • Quantify the field strength as a function of the phase difference in the scattered amplitudes: a chance to measure B-field using tracers without Zeeman sensitivity (Houde et al 2013) • Apply this analysis to other SF regions and SNRs (W44) MPIA, Heidelberg 21-05-13

  23. Thank you! MPIA, Heidelberg 21-05-13

  24. Phase shift distribution for CO(1-0) Label the figures MPIA, Heidelberg 21-05-13

  25. Phase shift distribution for CO(2-1) MPIA, Heidelberg 21-05-13

More Related