1 / 9

Measuring heat changes

Measuring heat changes. Section 11.2. After reading Section 11.2, you should know:. How to write or interpret a thermochemical equation How to calculate heat changes in a chemical or physical process. Calorimetry.

Download Presentation

Measuring heat changes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Measuring heat changes Section 11.2

  2. After reading Section 11.2, you should know: • How to write or interpret a thermochemical equation • How to calculate heat changes in a chemical or physical process

  3. Calorimetry • Calorimetry – the accurate and precise measurement of heat changes which occur during chemical and physical processes.

  4. Enthalpy • Enthalpy (H) – measure of the heat content of a system. • ∆H – change in enthalpy at constant pressure • For reactions which take place at constant pressure, the terms heat and enthalpy are used interchangeably, that is, q = ∆H. • q = ∆H = (m)(Cp)(∆T)

  5. Calorimeters • Coffee cup calorimeter – an insulated device used to measure the absorption or release of heat of a reaction at constant pressure. • Bomb calorimeter – used for measuring heat released when a compound is burned at constant volume.

  6. Thermochemical Equations • Thermochemical equation – an equation which includes the heat of the reaction • The physical state of all reactants and products must also be stated • The energy absorbed or released in a chemical equation can be expressed in two different ways: • As a reactant or product or • Using the symbol ΔH

  7. Thermochemical Equations Endothermic reaction (heat is a absorbed, so it is a reactant): 2 NaHCO3(s) + 129 kJ → Na2CO3(s) + CO2(g) + H2O(g) OR 2 NaHCO3(s) → Na2CO3(s) + CO2(g) + H2O(g) ∆H = +129 kJ

  8. Thermochemical Equations Exothermic reaction (heat is given off, so it is a product): CaO(s) + H2O(l) → Ca(OH)2(s) + 65.2 kJ OR CaO(s) + H2O(l) → Ca(OH)2(s) ∆H = − 65.2 kJ

  9. After reading Section 11.2, you should know: • How to write or interpret a thermochemical equation • How to calculate heat changes in a chemical or physical process

More Related