slide1 l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
บทที่ 12 อุณหพลศาสตร์ ( Thermodynamics ) PowerPoint Presentation
Download Presentation
บทที่ 12 อุณหพลศาสตร์ ( Thermodynamics )

Loading in 2 Seconds...

play fullscreen
1 / 34

บทที่ 12 อุณหพลศาสตร์ ( Thermodynamics ) - PowerPoint PPT Presentation


  • 273 Views
  • Uploaded on

บทที่ 12 อุณหพลศาสตร์ ( Thermodynamics ). ภาควิชาเคมี คณะวิทยาศาสตร์มหาวิทยาลัยเทคโนโลยีมหานคร. อุณหพลศาสตร์ ( Thermodynamics ) เป็นการศึกษาการเปลี่ยนแปลง พลังงานความร้อนกับพลังงานรูปอื่น. กฎข้อที่หนึ่งของเทอร์โมไดนามิกส์ (The First Law of Thermodynamics) .

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'บทที่ 12 อุณหพลศาสตร์ ( Thermodynamics )' - kaycee


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

บทที่ 12

อุณหพลศาสตร์

(Thermodynamics)

ภาควิชาเคมี คณะวิทยาศาสตร์มหาวิทยาลัยเทคโนโลยีมหานคร

slide2

อุณหพลศาสตร์ (Thermodynamics) เป็นการศึกษาการเปลี่ยนแปลง

พลังงานความร้อนกับพลังงานรูปอื่น

กฎข้อที่หนึ่งของเทอร์โมไดนามิกส์(The First Law of Thermodynamics)

“Energy can be converted from one form to another, but it cannot be created

or destroyed”

มีพื้นฐานมาจากกฎการอนุรักษ์พลังงาน ซึ่งกล่าวว่า พลังงานเกิดขึ้นเองได้หรือ

หายไปไม่ได้ แต่เปลี่ยนรูปไปเป็นพลังงานอื่นได้

  • ระบบมีการเปลี่ยนพลังงานภายใน (internal energy)

E = Ef - Ei

slide3

Internal energy ประกอบด้วย

  • Kinetic energy : การเคลื่อนที่แบบต่างๆ ของโมเลกุล และการเคลื่อนที่ของ
  • อิเล็กตรอนในโมเลกุล
  • 2. Potential energy: การดึงดูด / ผลักกัน ของอิเล็กตรอนและนิวเคลียส
  • ค่า E วัดไม่ได้แต่วัดการเปลี่ยนแปลง E ได้

E = E (products)–E (reactants)

  • ถ้าปฏิกิริยาหรือระบบ มี E เป็นลบ E นี้จะถูกปล่อยออกสู่สิ่งแวดล้อม

Esys + Esurr = 0

Esys = - Esurr

slide4

ในปฏิกิริยาเคมี Esys อาจเปลี่ยนรูปเป็นพลังงานอื่น

E = q +W

q คือ พลังงานความร้อน ถ้ามีเครื่องหมาย + เรียก endothermic(ดูดความร้อน)

– เรียก exothermic (คายความร้อน)

W คือ งานที่ทำโดยระบบ หรือทำให้ระบบ + สิ่งแวดล้อมทำงานให้ระบบ

– ระบบทำงานให้สิ่งแวดล้อม

งานกระทำในกระบอกสูบ (อัด gas ในกระบอกสูบ)

W =  PV

slide5

Enthalpy และ กฎข้อที่หนึ่งของเทอร์โมไดนามิกส์

(The First Law of Thermodynamics )

1. ปฏิกิริยาที่ปริมาตรคงที่ (constant volume) V = 0

E = q +W

= q + (-PV)

E = qV

2. ปฏิกิริยาที่ความดันคงที่ (constant pressure)

2Na(s) + 2H2O(l)2NaOH(aq) + H2(g)

 ปฏิกิริยานี้เกิด H2(g) เพื่อรักษาความดันให้คงที่ต้องเพิ่มปริมาตรให้มากขึ้น

W = - PV

slide6

ความร้อนของปฏิกิริยานี้ = qP = H (enthalpy change)

E = qP + W

= H  PV

H= E + PV

H = E + (PV)

ใช้คำนวณ E ของปฏิกิริยาที่เป็น gas

E = H   (nRT)

E = H - RT  n

 n = จำนวนโมลของแก๊สผลิตภัณฑ์ - จำนวนโมลของแก๊สตั้งต้น

R = ค่าคงที่ของแก๊ส (8.314 J/K.mol)

H = เอนทัลปีของปฏิกิริยา

slide7

ตัวอย่างที่ 1 จงคำนวณ E ของปฏิกิริยา

2CO(g) + O2(g)2CO2(g)H = 566 kJ

จาก E = HRT  n

= ( 566 kJ)

=  563.5 kJ

slide8

กฎข้อที่สองของเทอร์โมไดนามิกส์(The Second Law of Thermodynamics)

“ The entropy of the universe increases in a spontaneous process and

it remains unchanged in an equilibrium process ”

อธิบายว่า ในกระบวนการที่เกิดขึ้นได้เอง เอนโทรปี (S) ของจักรวาลจะเพิ่มขึ้น

และในกระบวนการสมดุล เอนโทรปีของจักรวาลจะไม่เปลี่ยนแปลง

กระบวนการที่เกิดขึ้นได้เอง(SpontaneousProcess)

  • น้ำไหลจากที่สูงลงที่ต่ำได้เองแต่ไหลย้อนกลับขึ้นข้างบนไม่ได้
  • ก้อนน้ำตาลละลายในน้ำได้เอง แต่เมื่อละลายไปแล้วไม่สามารถกลับเป็นก้อน

ได้เหมือนเดิม

  • เหล็กทำปฏิกิริยากับน้ำและออกซิเจน กลายเป็นสนิม แต่สนิมเปลี่ยนกลับเป็น

เหล็กอย่างเดิมไม่ได้

slide9

แก๊ส กระจายตัวจากกระเปาะเต็มไปสู่กระเปาะว่าง

สรุป spontaneous process เป็นการลดพลังงานในระบบ ซึ่งส่วนใหญ่จะเป็น

exothermic เช่น การเผาไหม้

combustion : CH4(g) + 2O2(g)CO2(g) + 2 H2O(l) H = 890.4 kJ

acid-base neutralization : H+(aq) + OH(aq)H2O(l) H = 56.2 kJ

slide10

 spontaneous reaction ไม่จำเป็นต้องลดพลังงานเสมอ

เช่น เพิ่มพลังงานเป็นendothermic: H2O(s)H2O(l) H = + 6.01 kJ

Spontaneity : การทำนายว่าปฏิกิริยาเกิดเองได้หรือไม่ ดูจาก Eหรือ

H อย่างเดียวไม่ได้ต้อง พิจารณาจาก entropy (S)ประกอบด้วย

เอนโทรปี(Entropy, S)

  • แสดงถึงความไม่เป็นระเบียบ (disorder) ของระบบ
  • ถ้ามีความไม่เป็นระเบียบสูง : S จะมีค่ามาก
  • ถ้ามีความไม่เป็นระเบียบต่ำ : S จะมีค่าต่ำ
  • ตัวอย่างปรากฏการณ์ที่เอนโทรปีมีค่าเพิ่มขึ้น

slide12

เอนโทรปีมาตรฐาน(Standard Entropy, S)

คือ ค่า entropy ที่ 25 C, 1 atm หน่วย คือ J/K หรือ J/K.mol

 ค่า S ของธาตุ (element) หรือ สารประกอบ > 0 (เป็นบวก)

 เปรียบเทียบ ค่า S เกี่ยวกับสถานะ

Ssolid < Sliquid < Sgas

 atom ที่มี electron มาก จะมี S มาก

เช่น 36KrS = 164.0 J / K.mol

10NeS = 146.2 J / K.mol

 การเปลี่ยน S ซึ่งเป็น state function

S = Sfinal - Sinitial

ถ้า S > 0 เป็น spontaneous process

S < 0 เป็น nonspontaneous process

slide13

การคำนวณ entropy

aA + bBcC + dD

Srxn = ( nS(products) )  ( mS(reactants))

 Srxn= [ cS(C) + dS(D) ] – [ aS(A) + bS(B) ]

เมื่อ n และ m เป็นจำนวนโมลของระบบ

slide14

ตัวอย่างที่ 2 จงคำนวณ Srxn ที่ 25C

a)CaCO3(s)CaO(s) + CO2(g)

= 213.6 J/K,

= 92.9 J/K,

เมื่อ SCaO(s)= 39.8 J/K,

หมายเหตุ ค่า S เป็นค่ามาตรฐานที่ได้จากการทดลอง ปกติเป็นค่าอ้างอิงท้ายหนังสือ

Srxn = [(1)SCaO(s) + (1)

] – (1)

= [(1)(39.8) + (1)(213.6)] – (1)(92.9)

= + 160.5 J/K

slide15

b)

N2(g) + 3 H2(g)2 NH3(g)

Srxn = [(2)

] – [(1)

+ (3)

]

= [(2)(193)] – [(1)(192) + (3)(131)]

= – 199 J/K

c) H2(g) + Cl2(g)2 HCl(g)

]

Srxn = [(2)

] – [(1)

+ (3)

= (2)(187) – [(1)(131) + (1)(223)]

= + 20 J/K

slide16

Srxn เป็น S ของระบบ ไม่สามารถบอกได้ว่าเป็น spontaneous process

  • หรือไม่
  • ถ้า reaction ผลิตจำนวน mole ของ gas เพิ่มขึ้น: Srxn มีค่าเป็นบวก
  • ถ้า reaction ผลิตจำนวน mole ของ gas ลดลง : Srxn มีค่าเป็นลบ
  • ถ้า reaction ผลิตจำนวน mole ของ gas เท่าเดิม: Srxn มีค่าใกล้ 0

-

-

slide17

ตัวอย่างที่ 3 จงทำนาย Srxn เป็น บวก / ลบ

a)Ag+(aq) + Cl¯(aq)AgCl(s)

จำนวน (aq) จาก 2 เป็น 0 โมล ดังนั้น Srxn เป็นลบ

b)NH4Cl(s)NH3(g) + HCl(g)

จำนวน (g) จาก 0 เป็น 2 โมล ดังนั้น Sorxn เป็น บวก

c)H2(g) + Br2(g)2HBr(g)

จำนวน (g) จาก 2 เป็น 2 โมล Sorxn มีค่าบวก/ลบก็ได้แต่ ใกล้ 0

slide18

การเปลี่ยนแปลงเอนโทรปีของสิ่งแวดล้อมการเปลี่ยนแปลงเอนโทรปีของสิ่งแวดล้อม

(Entropy Changes in the Surroundings)

จากกฎข้อที่ 2 : Suniverse > 0 เป็น spontaneous process

Suniverse = Ssys + Ssurr

.

slide19

กระบวนการคายความร้อนทำให้เกิดการถ่ายเทความร้อนจากระบบไป กระบวนการคายความร้อนทำให้เกิดการถ่ายเทความร้อนจากระบบไป

  • สู่สิ่งแวดล้อมทำให้สิ่งแวดล้อมมีเอนโทรปี (S)สูงขึ้น
  • กระบวนการดูดกลืนความร้อนทำให้ระบบดูดกลืนความร้อนจากสิ่ง
  • แวดล้อมทำให้สิ่งแวดล้อมมีเอนโทรปีสูงขึ้น

การเปลี่ยนแปลงเอนโทรปีของสิ่งแวดล้อม (Ssurr) จะเป็นสัดส่วน

โดยตรงกับ Hsys ดังนี้

Ssurr- Hsys

การเปลี่ยนแปลงเอนโทรปีเนื่องจากความร้อนปริมาณหนึ่งยังขึ้นกับอุณหภูมิ

ด้วย เขียนเป็นสมการได้ดังนี้

Ssurr =

slide20

ตัวอย่างที่ 4N2(g) + 3H2(g)2NH3(g)H= – 92.6 kJ

จงคำนวณ entropy of Universe at 25C

Ssurr = 

= 311 J/K

Ssys = [(2)

] – [(1)

]

+ (3)

= [(2)(193)] – [(1)(192) + (3)(131)] = – 199J/K

Suniverse = Ssys + Ssurr.

= (199) + (311) = 112 J/K

Suniverse > 0 แสดงว่า เป็น spontaneous process ที่ 25C

slide21

พลังงานอิสระของกิบส์ (Gibbs Free Energy, G)

จากกฎข้อที่ 2: Suniverse > 0 เป็น spontaneous process

Suniverse = Ssys. + Ssurr.

โดยปกติจะสนใจศึกษาเฉพาะระบบใดระบบหนึ่งเท่านั้น ไม่ได้ศึกษาทั้ง

จักรวาล และค่าของ Ssurมักคำนวณได้ยาก จึงนิยมใช้ Gibbs Free Energy

ในการทำนายทิศทางของปฏิกิริยา ดังนี้

G = H - TS

G = Gibbs free energy changeH = enthalpy change

T = C + 273 = KS = entropy change

slide22

G < 0 : spontaneous process (เกิดขึ้นเองได้)

G > 0 : non spontaneous process (เกิดขึ้นเองไม่ได้)

G = 0 : ระบบเข้าสู่สมดุล

ถ้าที่สภาวะมาตรฐาน : G = H TS

slide23

การเปลี่ยนแปลงพลังงานอิสระมาตรฐาน (Standard Free-Energy Changes)

aA + bBcC + dD

ที่สภาวะมาตรฐาน (standard state): gas ความดัน 1 atm สารละลายจะมี

ความเข้มข้น 1 M

Grxn = [ cGf(C) + dGf(D)] - [ aGf(A) + bGf(B)]

Grxn = nGf(product) - mGf(reactant)

n และ m คือ จำนวนโมลของ product และ reactant ตามลำดับ

Gf = standard free energy of formation of compound

Gf ของธาตุที่เสถียรที่สุด = 0

เช่น Gf(O2) = 0 Gf(C graphite) = 0

slide24

ตัวอย่างที่ 5 จงคำนวณ Grxn ที่ 25C

a)CH4(g)+ 2O2(g)CO2(g) + 2H2O(l)

= [(1)(– 394.4) + (2)(–237.2)] – [(1)(– 50.8) – 0]

=– 818.0 kJ (Grxn ติดลบ เป็น spontaneous process)

b)2MgO(s)2Mg(s)+ O2(g)

=0 (ธาตุ)

=0 (ธาตุ)

= – 2 (– 569.6)

= + 1139 kJ (Grxn เป็นบวก เป็น non spontaneous)

slide25

อุณหภูมิกับปฏิกิริยาเคมี (Temperature and Chemical Reactions)

สามารถคำนวณ Gจาก H และ S ของสารต่างๆ ที่ 25C แล้วนำ

ไปหาค่า T ซึ่ง reaction จะเกิดเองเมื่อ G < 0

ตัวอย่างที่ 6 CaCO3(s)CaO(s) + CO2(g) ที่ 25C

= [1(– 635.6) + 1(–393.5)] – [1(–1206.9)]

= + 177.8 kJ

= [1(39.8) + 1(213.6)] – 1(92.9)

= + 160.5 J/K

slide26

จาก G = H TS

= (177.8 kJ) – ( 298 K)(160.5/1000 kJ/K)

= + 130 kJ

  Grxn เป็นบวก แปลว่า ปฏิกิริยาเกิดไม่ได้เองที่ 25C

- ถ้าจะให้ Grxn < 0 ค่า T จะต้องมีค่าสูงกว่า Grxn = 0 (ที่สมดุล)

- หาค่า T โดยให้ Grxn = 0(ระบบเข้าสู่สมดุล)

G = H TS เมื่อ G= 0

0 = H TS

= 1108 K

= 1108 – 273 = 835C

ดังนั้น ที่ T สูงกว่า 835C ค่า Grxn < 0 (spontaneous process)

slide27

การเปลี่ยนแปลงวัฏภาค(Phase Transitions)

การเปลี่ยน phase เป็นการเปลี่ยนสถานะ แล้วระบบเข้าสู่สมดุล

ที่สมดุล G = 0

จาก G = H - TS

0 = H  TS

หรือ

slide28

ตัวอย่างที่ 7 น้ำแข็งหลอมเหลวกลายเป็นน้ำ ที่ 273 K (0C) มี

enthalpy of fusion (Hfus) เท่ากับ 6,010 J/mol จงหา entropy (S)

H2O(s) H2O(l) Hfus = 6,010 J/mol

H2O(l)H2O(s) Hfreez. =  6,010 J/mol

slide29

ตัวอย่างที่ 8Benzene มีค่าความร้อนของการหลอมเหลว (Hfus) =

10.9 kJ/mol และความร้อนของการกลายเป็นไอ (Hvap ) = 31.0 kJ/mol

ตามลำดับ จงคำนวณการเปลี่ยนแปลงเอนโทรปีในการเปลี่ยนวัฏภาคจากของ

แข็งเป็นของเหลว และ ของเหลวกลายเป็นไอสำหรับเบนซีน โดยมี

จุดหลอมเหลว 5.5 C= 273 + 5.5 = 278.5 K(T1) และ

จุดเดือด 80.1 C = 273 + 80.1 = 353.1 K (T2)

1. Entropy (S) จาก solid เป็น liquid

  • Entropy (S) จาก liquid เป็น gas
slide30

พลังงานอิสระกิบส์กับสมดุลเคมี(Free Energy with Chemical Equilibrium)

G = free energy change at standard state

ถ้าที่ไม่ใช้ standard state G = G + RTlnQ ; R = 8.314 J/K.mol

ที่สมดุล G = 0; Q = K ดังนั้น G= - RTlnK

slide31

ตัวอย่างที่ 9 จงคำนวณ ค่า K ที่ 25C กำหนด

=  237.2 kJ/mol

2H2O(l)2H2(g) + O2(g)

= [2(0) + 1(0)] – (2)( 273.2)

= + 474.4 kJ

G =  RTlnK

(474.4)(1000) = (8.314)(298)ln K

lnK = 191.5

K = e-191.5

= 6.8 x 10-84

slide32

ตัวอย่างที่ 10 จากปฏิกิริยาของ N2(g) + 3H2(g) 2NH3(g) มีการ

เปลี่ยนแปลงพลังงานอิสระมาตรฐาน (G) = -33.2 kJ และมีค่าคงที่สมดุล

(Kp) 6.59  105 ที่ 25 C ในการทดลองครั้งหนึ่งใช้ความดันเริ่มต้นของแก๊ส

ต่างๆ ดังนี้ = 0.25 atm, =0.87 atm, =12.9 atm จงคำนวณ G

ของปฏิกิริยา ณ ความดันดังกล่าวนี้และทำนายทิศทางของปฏิกิริยา

G = G + RTlnQ

= (-33.2)(1000) J+ (8.314 J/K mol)(298 K) ln =

= (-33.2  103) + (23.8  103) J

= - 9.9  103 J(spontaneous process)

slide33

ยืนยันด้วยการเทียบค่า Qpกับ Kp

Qp=

= 1.22 x 104

Kp= 6.59  105

Qp < Kp : ปฏิกิริยาไปทางขวา

slide34

กฎข้อที่สามของเทอร์โมไดนามิกส์ (The Third Law of Thermodynamics)

“The entropy of a perfect crystalline substance is zero at

the absolute zero of temperature”

คือ เอนโทรปีของผลึกสมบูรณ์แบบทุกชนิดมีค่าเท่ากับศูนย์ (0) ที่

อุณหภูมิศูนย์สัมบูรณ์ (0 K)