1 / 43

Indicator Displacement Assays for Solute Sensing

Indicator Displacement Assays for Solute Sensing. Julee Byram Mecozzi Group May 10, 2007. Chemical Sensors. Detect the presence and quantity of a specific analyte or group of analytes Industrial, Environmental, and Clinical Applications. “Desperately Seeking Sensors”.

kamran
Download Presentation

Indicator Displacement Assays for Solute Sensing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Indicator Displacement Assays for Solute Sensing Julee Byram Mecozzi Group May 10, 2007

  2. Chemical Sensors • Detect the presence and quantity of a specific analyte or group of analytes • Industrial, Environmental, and Clinical Applications

  3. “Desperately Seeking Sensors” Czarnik, A.W. Chem. Biol.1995, 2, 7, 423

  4. “Desperately Seeking Sensors” • Selectivity- specific analyte recognition • Affinity- high Ka value • Spectral properties- detectable signal modulation Czarnik, A.W. Chem. Biol.1995, 2, 7, 423

  5. Traditional Sensing Method Schematic Reproduced From: Wiskur, S.L., Ph.D. thesis, University of Texas at Austin, Austin, 2003, 20

  6. Indicator Displacement Assay (IDA) Schematic Reproduced From: Wiskur, S.L., Ph.D. thesis, University of Texas at Austin, Austin, 2003, 20

  7. Commonly Used Indicators

  8. IDA Sensing Systems

  9. Outline Designing Synthetic Receptor Systems Designed Sensors Molecularly Imprinted Polymer Sensors Evolved Sensors Applications and Future Work

  10. Designing a Receptor • Complimentary functional groups • For Binding Diols • Boronic Acids • For Binding Carboxylates • Ammonium Groups • Guanidinium Groups • Urea, Thiourea • Amide • Metal Interactions • Pre-organized Cavity

  11. Boronic Acids as Binding Groups • Complex saccharides and other 1,2- and 1,3-diols • Form reversible covalent bonds with diols, creating boronic esters • Kinetics of interconversion fast when boron tetrahedral • Incorporation of an amine adjacent to the boronic acid creates a tetrahedral sp3 boron at or near neutral pH Wiskur, S.L. et al.Organic Letters2001, 3, 9, 1311 Wiskur, S.L., Ph.D. thesis, University of Texas at Austin, Austin, 2003, 16

  12. Binding Carboxylates Ammonium Guanidinium Amide Urea, Thiourea

  13. Outline Designing Synthetic Receptor Systems Designed Sensors Evolved Sensors Molecularly Imprinted Polymer Sensors Applications and Future Work

  14. Synthetic Citrate Receptors 1.3.5-2,4,6-Functionalized Facially Segregated Benzene Scaffold Citrate Guanidinium Groups (Anslyn) Guanidinocarbonyl Pyrrole Groups (Schmuck)

  15. Citrate Binding Using Guanidinium Groups yield 63% Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed.1997, 36, 862 Hennrich, G.; Anslyn, E.V. Chem. Eur. J.2002, 8, 2218 Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc.2005, 127, 3373

  16. Citrate Binding Using Guanidinium Groups Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed.1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed.1998, 37, 649

  17. Citrate Binding Using Guanidinium Groups Kassoc (H●C) H●I 6.9 x 103 M-1 2.4 x 103 M-1 H●C + I 3.0 x 103 M-1 Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed.1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed.1998, 37, 649

  18. Citrate Binding Using Guanidinium Groups 525 nm Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed.1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed.1998, 37, 649

  19. Citrate Binding Using Guanidinium Groups Metzger, A.; Lynch, V.M.; Anslyn, E.V. Angew. Chem. Int. Ed.1997, 36, 862 Metzger, A.; Anslyn, E.V. Angew. Chem. Int. Ed.1998, 37, 649

  20. Citrate BindingUsing Guanidinocarbonyl Pyrrole Groups yield 63% Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc.2005, 127, 3373 Schmuck, C.; Schwegmann, M. Org. Biol. Chem.2006, 4, 836

  21. Citrate BindingUsing Guanidinocarbonyl Pyrrole Groups + + Kassoc (H●C) 1.6 x 105 M-1 518 nm Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc.2005, 127, 3373 Schmuck, C.; Schwegmann, M. Org. Biol. Chem.2006, 4, 836

  22. Citrate BindingUsing Guanidinocarbonyl Pyrrole Groups Schmuck, C.; Schwegmann, M. J. Am. Chem. Soc.2005, 127, 3373 Schmuck, C.; Schwegmann, M. Org. Biol. Chem.2006, 4, 836

  23. Multi-analyte Differential Sensing • Nature often does not use highly selective receptors • “Differential” receptors used in arrays • Response from each of these receptors for a particular mixture of stimuli creates a pattern

  24. Principle Component Analysis (PCA) Buryak, A.; Severin, K. J. Am. Chem. Soc.2005, 127, 3700

  25. Artificial Neural Network (ANN) Multi-Layer Perceptron (MLP) Hidden Output Input Sensor 1 Sensor 2 Sensor 3 Greene, N.T.; Morgan, S.L.; Shimizu, K.D. Chem. Commun.2004, 10, 1172

  26. Receptors for Tartrate and Malate Sensing Tartrate Malate Similar affinity for both Greater affinity for tartrate Predicted Tartrate Binding Actual Tartrate Binding Wiskur, S.L. et al.Angew. Chem. Int. Ed.2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed.1999, 38, 3666

  27. Combined Sensing of Tartrate and Malate Kassoc (H●A) 5.5 x 104 M-1 Tartrate 4.8 x 104 M-1 Malate Alizarin Complexone Similar affinity for both H●I H●A + I Wiskur, S.L. et al.Angew. Chem. Int. Ed.2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed.1999, 38, 3666

  28. Combined Sensing of Tartrate and Malate Succinate (▲) Tartrate () Ascorbate (◊) Glucose (■) Malate (○) Lactate (●) 450 nm Wiskur, S.L. et al.Angew. Chem. Int. Ed.2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed.1999, 38, 3666

  29. Differential Sensing of Tartrate and Malate λmax = 445 nm λmax = 567 nm Tartrate Malate Wiskur, S.L. et al.Angew. Chem. Int. Ed.2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed.1999, 38, 3666

  30. Differential Sensing of Tartrate and Malate Training Set Data 0.2 mM Tartrate 0.6 mM Malate 0.6 mM Tartrate 0.2 mM Malate Wiskur, S.L. et al.Angew. Chem. Int. Ed.2003, 42, 2070 Lavigne, J.L.; Anslyn, E.V. Angew. Chem. Int. Ed.1999, 38, 3666

  31. Outline Designing Synthetic Receptor Systems Designed Sensors Evolved Sensors Molecularly Imprinted Polymer Sensors Applications and Future Work

  32. Systematic Evolution of Ligands by Exponential Enrichment (SELEX) Schematic Reproduced From: http://surgery.duke.edu/wysiwyg/images/surgery_SELEX.jpg

  33. Aptamer-Based Sensor for Cocaine 518 nm 472 nm Kd ~ 100 μM Cocaine concentration in serum 10-4000 μM Stojanovic, M.N.; Prada, P.; Landry, D.W. J. Am. Chem. Soc.2001, 123, 4928

  34. Aptamer-Based Sensor for Cocaine Kd < 5 μM Stojanovic, M.N.; Landry, D.W. J. Am. Chem. Soc.2002, 124, 9678

  35. Aptamer-Based Sensor for Cocaine 3 4 C 0 = blank control Stojanovic, M.N.; Landry, D.W. J. Am. Chem. Soc.2002, 124, 9678

  36. Outline Designing Synthetic Receptor Systems Designed Sensors Evolved Sensors Molecularly Imprinted Polymer Sensors Applications and Future Work

  37. Molecularly Imprinted Polymer (MIP) Sensor Array Greene, N.T.; Shimizu, K.D. J. Am. Chem. Soc.2005, 127, 5695

  38. Molecularly Imprinted Polymer (MIP) Sensor Array Stephenson, C.J.; Shimizu, K.D. Polym. Int.2007, 56, 482

  39. Molecularly Imprinted Polymer (MIP) Sensor Array Benzofurazan-based Amine Dye λmax 460 nm Greene, N.T.; Shimizu, K.D. J. Am. Chem. Soc.2005, 127, 5695

  40. Outline Designing Synthetic Receptor Systems Designed Sensors Evolved Sensors Molecularly Imprinted Polymer Sensors Applications and Future Work

  41. Applications and Future • Electronic Tongue • Medical Tests • Food Science • Chemical Warfare

  42. Acknowledgements • Professor Sandro Mecozzi • Mecozzi Group Members • Peter Anderson • Jonathan Fast • Andrew Razgulin • Practice Talk Attendees • Becca Splain • Maren Buck • Katherine Traynor • Matt Windsor • Claire Poppe • Alex Clemens • Richard Grant • Jessica Menke • Lauren Boyle • Margie Mattmann • God, Family, and Friends

More Related