slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
TRANSPORT OF RESPIRATORY GASES PowerPoint Presentation
Download Presentation
TRANSPORT OF RESPIRATORY GASES

Loading in 2 Seconds...

play fullscreen
1 / 17

TRANSPORT OF RESPIRATORY GASES - PowerPoint PPT Presentation


  • 104 Views
  • Uploaded on

TRANSPORT OF RESPIRATORY GASES. RESPIRATORY GASES; How are they transported in the blood???. CARBONDIOXIDE, CO 2. OXYGEN, O 2. The only way for Oxygen to be carried around the body is by the HEAMOGLOBIN, in red blood cells. Carbondioxide is transported by

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

TRANSPORT OF RESPIRATORY GASES


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

TRANSPORT

OF

RESPIRATORY

GASES

slide2

RESPIRATORY GASES; How are they

transported in the blood???

CARBONDIOXIDE,

CO2

OXYGEN, O2

The only way for

Oxygen to be carried

around the body

is by the

HEAMOGLOBIN, in

red blood cells.

Carbondioxide is transported by

the blood in three ways;

A)As sodium hydrogencarbonate in plasma

B)As carbomino compounds in red

cells

C) In simple solution, dissolved in

the plasma

transport of o 2 by the heamoglobin
Transport of O2 by the Heamoglobin

Inside red blood cells, there are many heamoglobin molecules which are

large globular proteins, each consisting of two alpha subunits and two

beta subunits.

Each subunit has a haem group and a polypeptide globin, This globin molecule coils around the haem groups which contain iron.

The iron atom can reversibly bond with one molecule of oxygen. Since

it has four subunits, a heamoblobin molecule can combine reversibly with up to

four oxygen molecules forming oxyheamoglobin molecules.

Hb + 4O2 HbO8

beta1

beta2

Haem

group

globin

Red Blood

Cell

alpha2

alpha1

transport of o 2 by the heamoglobin1
Transport of O2 by the Heamoglobin

When an heamoglobin molecule is not bonded to oxygen molecule, deoxyheamoglobin (heamoglobin without O2 molecules) stays in tensed state.

When the first molecule of oxygen combines with a heamoglobin, oxyheamoglobin shifts to relaxed state in which the shape of heamoglobin changes hence it becomes easier for other three oxygen molecules to bind to the other haems.

transport of o 2 by the heamoglobin2
Transport of O2 by the Heamoglobin
  • Partial Pressure of Oxygen, pO2

Partial Pressure is the pressure exerted by the one gas in a mixture.

The partial pressure of oxygen (pO2) is a measure of oxygen concentration. The amount of oxygen that combines depends upon this partial pressure. Heamoglobin does not necessarily unload all of its oxygen as it passes through the body tissues.

Heamoglobin requires some conditions in order to load or unload its oxygens.

transport of o 2 by the heamoglobin3
Transport of O2 by the Heamoglobin

Because of the conditions mentioned before, red blood cells hence heamoglobins are very efficient in transporting oxygen from alveoli in the lungs to the respiring cells in the tissues.

Alveoli

The tissue fluid surrounds the cells and supplies them with oxygen. As the cells respire, they produce carbondioxide so the tissue fluid needs to be replaced continually with the fresh one. In order to supply cells with oxygen, the red blood cells move to the lungs where there is high pO2 and increased alkalinity. They combine with the oxygen molecules and move to the respiring cells where there is high pCO2 and acidity. As a result, they give up their oxygens and oxygen molecules reach respiring cells via tissue fluid.

Red blood cell

Respiring cells

Tissue fluid

transport of o 2 by theheamoglobin
Transport of O2 by theHeamoglobin

100% saturation means that every

Heamoglobin molecule carries max

Of molecules of oxygen

The releationship between the partial pressure of oxygen and quantity of the oxygen combined with haemoglobin is shown by S-shapedDISSOCIATION CURVES.

Dissociation curve for an adult

Haemoglobin (Hb).

0% saturation means that none of the

Heamoglobin molecules carry any oxygen

transport of o 2 by theheamoglobin1
Transport of O2 by theHeamoglobin

Dissociation Curve

WHY S-SHAPED?

As mentioned before, when heamoglobin combines with first oxygen molecule, it alters its shape to anable other molecules to join on it easily. However as heamoglobin starts to become fully saturated, it becomes harder for more oxygen molecules to join.

◊Steep bits in the middle means that it is for oxygen molecules to join the heamoglobin molecules.

◊The shallow parts at each end show that it is harder now for oxygen molecules to be loaded.

transport of carbondioxide in the blood
Transport of Carbondioxide in the Blood

A)As sodium hydrogencarbonate in plasma

  • Carbondioxide, which is produced in respiration, diffuses from body tissues into the blood where most of it, is taken by the red blood cells.
  • In red blood cells,carbondioxide combines with water to form carbonic acid, H2CO3. This reaction is catalysed an enyzme called carbonic anhydrase.
  • Then carbonic acid dissociates into hydrogencarbonate and hydrogen ions.
  • Hydrogen ions causes oxyhaemoglobin to dissociate. Therefore oxygen diffuses into the cells for respiration.
transport of carbondioxide in the blood1
Transport of Carbondioxide in the Blood

Ξ To make sure that red blood cells remain electrically neutral, chloride ions

move into the red blood cells by a process known as Chloride Shift!

  • The hydrogen ions combine with haemoglobin and form haemoglobinic acid. This meas that haemoglobin molecules act as buffers mopping up hydrogen ions and preventing changes in pH.
  • Hydrogencarbonate ions are pumped out of the red blood cells and enter the
  • plasma where they combine with sodium so becoming sodium hydrogencarbonate.
transport of carbondioxide in the blood2
Transport of Carbondioxide in the Blood

B)As carbomino compounds in red cells

Carbon dioxide also reacts with heamoglobin and other proteins to form compounds known as CARBOMINO COPMPOUNDS.

C) In simple solution, dissolved in the plasma

Carbon dioxide is relatively soluble in in the plasma and a small percentage of it is transported in the form of a simple solution, dissolved in the plasma.

bohr effect
Ф BOHR EFFECT Ф
  • The exact shape of the dissociation curve depends on a number of factors such as
  • Partial pressure of carbondioxide (pCO2)
  • Temperature
  • pH

Because of the Bohr Effect, an increase in partial pessure of carbon dioxide, a decrease in pH or increased temperature causes hemoglobin to bind to oxygen with less affinity.

Bohr Effect is very important in respiring tissues since pCO2 increases in tissue fluid. This causes oxyhaemoglobin to release its oxygens readily causing more oxygen to be delivered to the tissues needed for respiration.

bohr effect1
Ф BOHR EFFECT Ф

As shown on the dissociation

curve, when carbon dioxide

level increases, the dissociation curve shifts to right. This prooves that more oxygen is released from the blood.

The lower the saturation of O2 in the blood, the more O2 will be released.

different species have different dissociation curves
Different Species Have Different Dissociation Curves

Hawk; an active animal with a high

Respiratory rate where there is

Plenty of oxygen.

% saturation

of haemoglobin with oxygen

Human

Llama living in Andes; an animal

Living at high attitudes where the

Partial pressure of oxygen is lower

Lugworm, animal living in depleted

Oxygen environment.

Oxygen tension / kPa

different species have different dissociation curves1
Different Species Have Different Dissociation Curves

As shown on the dissociation curve, the chemical composition of heamoglobin and its oxygen carrying capacity is different in different species.

Organisms living in depleted O2 environment have dissociation

curves to the left of human ones. Eg lugworms and Llamas.

Organisms that are active and have higher partial pressure of oxygen in their environments have curves shifting to right of the human ones. Eg hawks

That means heamoglobins of lugworms have more affinity for oxygen than that of the others’.

Lugworm

Llama

Human

% saturation

of haemoglobin with oxygen

Hawk

Oxygen tension / kPa

summary
ЖSUMMARYЖ

Main Points

≈ Oxygen molecules are transported in the blood by the heamoglobins in the red blood cells

≈ Carbondioxide molecules are carried by 3 ways; as simple solutions dissolved in plasma, as carbomino compounds and as sodium hydrogencarbonate

≈ The amount of oxygen that binds to heamoglobin molecules depends on partial pressure of oxygen. It is a measure of oxygen concentration.

≈ The dissociation curve shows the releationship between the partial pressure of oxygen and the quantity of oxygen molecules combining with the heamoglobin.

≈ BOHR EFFECT is an effect by which increase in partial pressure of carbondioxide, decrease in pH and high temperature causes a reduction of the affinity of heamoglobin for oxygen.

≈ On the dissocaition curves, the curves shifting to left of the others means increased affinity of oxygen for that heamoglobin.

the end
THE END

Thank You For Listening

Created by Ovgu Ozenli