Download
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
Excited state spatial distributions in a cold strontium gas PowerPoint Presentation
Download Presentation
Excited state spatial distributions in a cold strontium gas

Excited state spatial distributions in a cold strontium gas

113 Views Download Presentation
Download Presentation

Excited state spatial distributions in a cold strontium gas

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Excited state spatial distributions in a cold strontium gas Graham Lochead

  2. Outline Motivation and Rydberg physics Experimental details Rydberg spatial distributions The strontium Rydberg project – April 2012

  3. Strong interactions Eint > Epot,Ekin Problem: Correlations make modelling difficult Solution: Simulate in controlled environment The strontium Rydberg project – April 2012

  4. Quantum simulator Need single site addressability … Need strong interactions …Rydberg atoms Weitenberg et al, Nature 471, 319–324 (2011) The strontium Rydberg project – April 2012

  5. Rydberg properties High principal quantum number n Ionization limit n = 68 n = 67 n = 8 n = 66 n = 7 Properties H~ 0.1 nm n = 6 n = 5 n = 100~ 1 μm The strontium Rydberg project – April 2012

  6. Rydberg physics Strong, controllable interactions The strontium Rydberg project – April 2012

  7. Dipole blockade Interaction shift Energy Separation One excitation per atom pair when The strontium Rydberg project – April 2012

  8. Experimental blockade Saturation of excitation H. Schempp et al, Phys. Rev. Lett. 104, 173602 (2010) CNOT gate operation L. Isenhower et al, Phys. Rev. Lett. 104, 010503 (2010) The strontium Rydberg project – April 2012

  9. Experimental plan The strontium Rydberg project – April 2012

  10. Project aim Investigate excited state spatial distributions Ground state Excited state Column density Position T. Pohl et al, Phys. Rev. Lett. 104, 043002 (2010) The strontium Rydberg project – April 2012

  11. Cold atom setup Zeeman slowed atomic beam 5 x 106 strontium atoms at ~5 mK 2 x 109 atoms/cm3 Rydberg laser locked using EIT R. P. Abel et al, Appl. Phys. Lett. 94, 071107 (2009) The strontium Rydberg project – April 2012

  12. Coherent population trapping 5sns(d) Ions detected on MCP Ions Rydberg atoms Sub natural linewidth Control mJ λ2 = 413 nm 5s5p λ1 = 461 nm 5s2 The strontium Rydberg project – April 2012

  13. Autoionization 5s Sr+ e- 5pns(d) λ3 = 408 nm 5s Sr+ 5sns(d) λ2 = 413 nm 5s5p Resonant ionization Independent of excitation State selective λ1 = 461 nm 5s2 J. Millen et al, Phys. Rev. Lett. 105, 213004 (2010) The strontium Rydberg project – April 2012

  14. Focusing and translating The strontium Rydberg project – April 2012

  15. Spatial distribution Focus coupling beam as well Scan one direction along ensemble Ground state from camera image The strontium Rydberg project – April 2012

  16. 2D spatial distribution Multiple slices → 2D spatial map Ground state Excited state The strontium Rydberg project – April 2012

  17. Looking for blockade Vary density of ground state The strontium Rydberg project – April 2012

  18. Looking for blockade No blockade so far Denser sample needed → second stage cooling → dipole trap The strontium Rydberg project – April 2012

  19. Summary Rydberg states have strong interactions Coherently excited cold strontium to Rydberg states Measured excited state spatial distributions The strontium Rydberg project – April 2012

  20. The team Matt Jones Charles Adams Me Danielle Boddy Daniel Sadler Christophe Vaillant The strontium Rydberg project – April 2012

  21. The strontium Rydberg project – April 2012

  22. Laser stabilization 5sns(d) λ2 = 413 nm 5s5p λ1 = 461 nm 5s2 R. P. Abel et al, Appl. Phys. Lett. 94, 071107 (2009) The strontium Rydberg project – April 2012