1 / 52

Overview of NICAM: global cloud-resolving simulations and physical schemes

Overview of NICAM: global cloud-resolving simulations and physical schemes. Masaki Satoh Research Institute for Global Change, JAMSTEC Center for Climate System Research, Univ. of Tokyo http://nicam.jp. COLA visit October 21-23, 2009 COLA, USA. Structure of our talks.

johnajohn
Download Presentation

Overview of NICAM: global cloud-resolving simulations and physical schemes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Overview of NICAM: global cloud-resolving simulations and physical schemes Masaki Satoh Research Institute for Global Change, JAMSTEC Center for Climate System Research, Univ. of Tokyo http://nicam.jp COLA visit October 21-23, 2009 COLA, USA

  2. Structure of our talks • M. Satoh: Today Wed 11h • Overview of NICAM & physics schemes • H. Tomita: Today afternoon Wed • Numerical methods of NICAM • C. Kodama: Tomorrow morning, Thu • Tutorial package of NICAM

  3. Outlines MTSAT-1R, IR NICAM 3.5km, OLR • Overview of NICAM Nonhydrostatic ICosahedral Atmospheric Model for Global Cloud-Resolving Simulations • NICAM simulations • MJO, TCs, monsoons, precipitation, diurnal variations & cloud properties • Physical schemes • Summary and Future plans Miura et a.(2007,Science)

  4. NICAM • Nonhydrostatic Icosahedarl Atmospheric Model Development since 2000 Tomita and Satoh(2005, Fluid Dyn. Res.) Satoh et al.(2008, J. Comp. Phys.) First global dx=3.5km run in 2004 Tomita et al.(2005, Geophys. Res. Lett.) • Icosahedral grid Spring dynamics smoothing Second order accuracy Tomita et al.(2001, J. Comp. Phys.), Tomita et al.(2002, J. Comp. Phys.) • Flux-form conservative nonhydrostatic scheme Split-explicit time integration Mass, total energy & momentum conserving Satoh (2002, Mon. Wea. Rev.) Satoh (2003, Mon. Wea. Rev.)

  5. Model description

  6. NICAM simulations • Boreal winter, 2006, 3.5km a week, 7km a month • H. Miura • Boreal summer, 2004; 7km 3months, 14km 5months • K. Oouchi , A. Noda • Ensemble exp. for TC cyclogenesis • H. Taniguchi, W. Yanase • Aerosol coupling exp.(Jul 2006; Nov 2006) • K. Suzuki, T. Seiki • APE, Global Warming-conditions • H. Tomita, S. Iga; K. Oouchi, Y. Yamada; Y. Tsushima • Regional NICAM using coordinate transformation

  7. MJO simulations Monsoon simulations, ISVs and TCs Diurnal variability, cloud properties NICAM SIMULATIONS

  8. NICAM simulation: MJO Experiment MISMO obs. • Horizontal grid spacing: • 14 km, 7 km, 3.5 km • Vertical domain • 0 m ~ 38,000 m • 40-levels (stretching grid) • Integration: • 7km, 14km runs: 30 days from 15 Dec 2006 • 7km, 14km runs: 30 days from 1 Nov 2006 • 3.5km run: 7 days from 25 Dec 2006 • Initial conditions: • Interpolated from NCEP tropospheric analyses • (6 hourly, 1.0x1.0 degree grids) • Boundary conditions: • Reynolds SST, Sea ICE (weekly data) • ETOPO-5 topography, Matthews vegetation • UGAMP ozone climatology (for AMPI2) • EXP. Dec 2006: Miura et al.(2007,Science), Nasuno et al.(2009,JMSJ), • Fudeyasu et al. (2009, GRL), Liu et al. (2009, MWR) • EXP. Nov. 2006 (MISMO): Miura et al. (2009, GRL)

  9. NICAM3.5km-grid mesh Simulation Outgoing Longwave Radiation (OLR) Geo-stationary satellite (MTSAT-1R) Infrared image

  10. Realistic MJO simulation Miura et a.(2007,Science), Nasuno et al.(2009,JMSJ), Fudeyasu et al. (2009, GRL), Liu et al. (2009, MWR) NCEP/CPC IR NICAM 7km, OLR

  11. Hovmöller diagrams: precipitation, temperature Precipitation (10S-5N) TRMM PR NICAM dx=7 km Eastward 10-15 m/s 1000-2000 km (1-2 day) T (975 hPa) NCEP NICAM dx=7 km Role of cold pools

  12. Hovmöller diagrams: zonal winds & vertical cross section (composite) U (975 hPa) NCEP NICAM dx=7 km Precipitation (10S-5N)

  13. Internal structure of MJO Hovmöller diagrams: IR/OLR (Eq.) IR (NCEP/CPC) NICAM 7-km 10-15 m/s 10-15 m/s ~5m/s ~5m/s Westward Rossby waves &Eastward Kelvin waves or squall type rain bands

  14. NICAM (dx=7km) Similar feature in observations (Dr. H. Yamada) B A

  15. B A

  16. B A

  17. B A

  18. B A

  19. MISMO (JAMSTECホームページより) http://www.jamstec.go.jp/jamstec-e/PR/0701/0122/image4.html

  20. Roles of squall line types clusters on MJO Precipitable water Column integrated cloud water 2Jan 2007 rainband 6 Jan 2007 Miura et al.(2007)

  21. Rossby waves: accumulation of water vapor on the from of MJOs. from eastward • Moist Kelvin waves becom active when MJOs are active. • Multiscale interactions of Rossby/Kelvin waves and MJOs. Nakazawa 1988 Ichikawa and Yasunari, 2007

  22. Fudeyasu, H., Wang, Y., Satoh, M., et al. (2008) The global cloud-resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones. Geophys. Res. Lett., 35, L22808. 300km NICAM MTSAT-1R MJO-organized clouds MJO-organized clouds TS Isobel TS Isobel Dec. 29 2006 2weeks after initialization NICAM reasonably produced not only the large-scale circulation, such as the MJO, but also the embedded mesoscale features, such as TC rainbands. Surface rain rate (mm hour-1) by NICAM Surface rain rate (mm hour-1) by TRMM-TMI 0920 UTC 2 Jan. Latitude 2230 UTC 2 Jan.

  23. Observation vs. NICAM BoM: Australian Government Bureau of Meteorology BoM best track vs. NICAM-TC track 28 NICAM BoM-TC SLP vs. NICAM-TC SLP NICAM 1010 1000 990 980 970 960 29 1 31 Obs. 31 1 2 Obs. Latitude 2 3 Sea level pressure (hPa) 3 4 12/28 29 30 31 1/1 2 3 4 5 Date Longitude NICAM reasonably captured Isobel’s motions, timing, and intensity changes. Fudeyasu et al. (2008, GRL)

  24. TC genesis in MJO Front of WWB WWB Returned disturbance TC development due to cyclonic shear

  25. MJO simulations Monsoon simulations, ISVs and TCs Diurnal variability, cloud properties NICAM SIMULATIONS

  26. Monsoon simulations • Boreal Summer experiments: • 14km: June-Oct. 2006 • 7km: June-Aug. 2006 Oouchi et al. (2009) Asian summer monsoon simulated by a global cloud-system resolving model: Diurnal to intra-seasonal variability. Geophys. Res. Lett., 36, L11815. Oouchi et al. (2009) A simulated preconditioning of typhoon genesis controlled by a boreal summer Madden-Julian Oscillation event in a global cloud-resolving mode. SOLA, 2009, Vol. 5, 065.068, doi:10.2151/sola.2009.017.

  27. Precipitation distribution over south Asiaaverage, June-Aug., 2004 TRMM observation NICAM 7km-grid exp. Oouchi et al. (2009, Geophys. Res. Lett.)

  28. Intra-Seasonal variabilities Indian Ocean Western Pacific • Northward propagation in the Indian Ocean • Monsoon index • Boreal summer MJOs and TC activities Oouchi et al. (2009, SOLA) Oouchi et al. (2009, Geophys. Res. Lett.)

  29. The Myanmar cyclone simulations • The Myanmar cyclone Nargis • 14km: Apr. 2008, Ensembles • Regional NICAM exp. Taniguchi, et al. (2009) Ensemble simulation of cyclone Nargis by a Global Cloud-system-resolving Model - modulation of cyclogenesis by the Madden-Julian Oscillation. J. Meteor. Soc., submitted. Yanase et al. (2009) Environmental modulation and numerical predictability associated with the genesis of tropical cyclone Nargis (2008). J. Meteor. Soc., submitted.

  30. Myanmar cyclone Nargis (2008) ensemble simulationsTC genesis captured with ISV and MJO26 Apr. – 26 May 2008 Taniguchi et al. (2009, JMSJ, submitted)

  31. TC cyclogenesis in Indian Ocean is generally captured with ISV using stretch-NICAM Yanase et al. (2009, JMSJ, submittd) Oct-Dec 2008 Apr-Jun 2008

  32. Number and intensities of tropical cyclones Yamada et al.(2009, submitted) • TC threshold 17m/s • TC activities with ISVs, easterly

  33. Change in Tropical cyclone intensities CTL:JJA, 2004 GW: JJA, average of 2070-99 Consistent with other studies: less number and stronger TCs Cloud height vs MSLP

  34. MJO simulations Monsoon simulations, ISVs and TCs Diurnal variability, cloud properties NICAM SIMULATIONS

  35. Diurnal variation of precipitation Phase Amplitude NICAM 7km vs TRMM 3B42 15 Dec 2006-15 Jan 2007 Sato et al.(2009, J. Clim)

  36. Phase (15S-EQ) 3B42 7km-grd +14km-grid Amplitude (15S-EQ) Africa Maritime continent South America ・Improvement of phase and amplitudes from 14km-mesh to 7km-mesh

  37. Ice cloud evaluation by split windows GOES-W Cloud ice(split window) NICAM 3.5km Cloud Ice+snow Inoue, T., Satoh, M., Hagihara, Y., Miura, H., Schmetz, J. (2009) Comparison of high-level clouds represented in a global cloud-system resolving model with CALIPSO/CloudSat and geostationary satellite observations. J. Geophys. Res., submitted

  38. Cloud ice Snow Calipso/CloudSat simulated reflectivities by COSP Calipso CloudSat

  39. Physical schemes • Cloud microphysics: NSW6 Tomita, H. (2008) New microphysics with five and six categories with diagnostic generation of cloud ice. J. Meteor. Soc. Japan, 86A,121-142 • Boundary layer: MYNN-level2 Noda, A.T., Oouchi, K., Satoh, M., Tomita, H., Iga, S.-I., Tsushima, Y. (2009) Importance of the subgrid-scale turbulent moist process: cloud distribution in global cloud-resolving simulations. Atmospheric Research, printing, doi:10.1016/j.atmosres.2009.05.007. • Radiation: MSTRNX-AR5 Sekiguchi, M., Nakajima, T. (2008) A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. JN= Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 2779-2793. doi:10.1016/j.jqsrt.2008.07.013 • SST: slab ocean • Land: MATSIRO Takata,K., Emori,S., Watanabe,T. (2003) Development of the minimal advanced treatments of surface interaction and runoff. Global and Planetary Change, 38, Issues 1-2, 209-222

  40. Cloud Microphysics Schemes (CMP) • Grabowski (1998) • NSW6 (Tomita 2008,JMSJ) • Single-moment 6-categories of water • NDW6 (Seiki 2009) • Double-moment 6-categories of water After Seifert and Beheng (2006)

  41. IWP distributions Waliser et al. (2009) G98 NSW6

  42. IWC distributions G98 NSW6 fvMMF NICAM RAVE

  43. Water substances G98 NSW6(New exp.)

  44. Sensitivity to cloud microphysics schemes: CFADS- maritime continent region in the tropicsuse of the satellite simulator COSP CloudSat/CALIPSO NICAM-GCRM 3.5km, Grabowski(1998) NSW6 (Tomita 2008), stretched-NICAM <5km Satoh et al. (2009, JGR)

  45. PBL scheme • Noda et al. (2009, Atmos. Res.) • Yamada and Mellor level2 • Nakanishi and Niino (2006, Bound. Layer Meteor.) • Moist process • Yamada and Mellor (2009,QJHMS) • We use partial clouds only in the PBL scheme • Cloud microphysics scheme resets the diagnosed clouds in PBL • Radiation scheme does not consider partial clouds

  46. Cloud fractions Noda et al. (2009) Importance of the subgrid-scale turbulent moist process: cloud distribution in global cloud-resolving simulations. Atmospheric Research, in press.

  47. Radiation budget • OLR: tuning issue of CMP • PBL affects shallow clouds and OSR • Combination of PBL OLR OSR Solid: ERBE; dash: 14km; dot: 7km

  48. Radiation scheme • Sekiguchi and Nakajima (2008) • MSTRNX: Model Simulation radiation TRaNsfer code version 10 Correlated K-distribution method • Effective radius is independently specified from CMP • 8um for liquid cloud (qc+qr) rain is not counted if OPT_QC_ONLY=TRUE • 40um for total ice clouds (qi+qs+qg)

  49. Land model and ocean process • Land: MATSIRO; Takata et al. (2003) • Sib-type model • Slab Ocean • DZ=50m, nudging to SST with 5days • Sea ice and snow => Kodama’s talk

  50. Issues • We have not yet done NICAM 7km runs with new physics, and they may include biases. • Precipitation bias • Check OLR and OSR • Tropical cyclones • Tracking tool available

More Related