Local tests of spatial variation of m e /m p - PowerPoint PPT Presentation

johana
local tests of spatial variation of m e m p n.
Skip this Video
Loading SlideShow in 5 Seconds..
Local tests of spatial variation of m e /m p PowerPoint Presentation
Download Presentation
Local tests of spatial variation of m e /m p

play fullscreen
1 / 18
Download Presentation
Local tests of spatial variation of m e /m p
423 Views
Download Presentation

Local tests of spatial variation of m e /m p

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Local tests of spatial variation of me/mp S. A. Levshakov Department of Theoretical Astrophysics Physical-Technical Institute, St. Petersburg JINR, Dec 1-5, 2014 Department of Theoretical Astrophysics Physical-Technical Institute, St. Petersburg , 201

  2. Low energies Einstein equivalence principle local Lorentz invariance (LLI) changingα can be associated with a violation ofLLI(Kostelecky et al. 2003) local position invariance (LPI) LPI : the outcome of any local non-gravitational experiment is independent of where and when it is performed, i.e., that the fundamental physical laws are space-time invariant μ = me /mp

  3. Measurements comparison of inversion (|Q| > 1) and rotational (Q=1) transitions Δμ/μ = (Vrot – Vinv)/(ΔQ c) = ΔV/(ΔQ c) ΔV= ΔV +ΔV+ΔV (= signal + Doppler noise + systematics) μ s n ΔV= 0 n ΔV=ΔV + ΔV μ s Effelsberg 100-m telescope

  4. Effelsberg 100-m telescope Line width 0.2 km/s ~ 0.001 km/s Line position uncertainty 0.15 km/s ~ 0.005 km/s Medicina 32-m telescope

  5. Systematics Time series Effelsberg New spectrometer: XFFTS (eXtended FFTS) Exposure time: 30 min/scan (ON+OFF) PSW 150 sec/point instability ofδV ~ 10 m/sdetected ~ 1/4th Δch

  6. recent estimate Effelsberg observations NH3 HC3N HC5N HC7N formal weighted mean: <ΔV>=3±6 m/s (1σ C.L.) Δμ/μ < 2 10-8 (3σ C.L.) Levshakov et al. 2013 ΔV=V – V rot inv

  7. precision of lab frequencies: ε= 14 m/s N2H+ (1-0) 93.2 GHz rotational transitions ε = 2.8 m/s HC3N (2-1) 18.2 GHz ε= 0.6 m/s NH3 (1,1) 23.7 GHz inversion transition ε= 0.3 m/s NH3 (11 - 21) 1215.2 GHz rotational transition uncertainty in VLSR of1 m/s ammonia method (ΔQ=3.5) limit on Δμ/μ ~10-9 (ifbased on NH3 only !)

  8. How to improve current Δμ/μ estimates? para- vs ortho-NH3 ! rotational transition of para-NH3 1215.2 GHz 644.4 GHz, i.e. in B9 ALMA band - 21 JK =11 z = 0.89

  9. Herschel/HIFI observations ofpara-andortho-NH3 rotational transitions Different absorption patterns ! VLSR star-forming region G10.6-0.4 (W31C) Persson et al. 2010 robust approach – to use para-NH3 only

  10. Estimate of Δμ/μ for local sources (MW): Δμ/μ = σV/(ΔQ c) if linewidth ΔV ~ 0.2 km/s (like in L1498), σV~ 0.001 km/s, S/N ~ 30 then σV = 0.69(S/N)-1(ΔVΔch)1/2 Δμ/μ ~ 10-9 Δch ~ 0.01 km/s gives and Δch ~ 1 kHz at 23.7 GHz Δch ~ 40 kHz at 1215 GHz but requires space observations at 1215 GHz

  11. Extragalactic NH3 absorptionwasobserved: z = 0.0028 LINER-type AGN NGC 660 NGC 3079 z = 0.0038 Seyfert IC 860 z = 0.0013 possible QSO Mangum et al. 2013 IR 15107+0724 z = 0.013 Arp 220 z = 0.018 Seyfert, ULIRG z = 6.34 HFLS3 Dusty star-forming galaxy, DSFG Riechers et al. 2013 if z > 1 then ground-based telescopes can be used for σV~ 0.1 km/s, S/N ~ 30, and ΔV ~ 20 km/s (like in PKS1830-211) Δμ/μ ~ 10-7 (based on NH3 only)

  12. Hydronium H3O+ Q -3.0 30-20 396 GHz o-H3O+ p-H3O+ 32-22 364 GHz -3.5 11-21 307 GHz +6.4 p-H3O+ Kozlov & Levshakov 2011 Kozlov, Porsev, Reimers 2011 p-H3O+ : ΔQ = Q307 – Q364 = 9.9 frequencies are in GHz three times ΔQammonia

  13. H3O+ observations (star-forming regions, MW) G34.3+0.15 linewidth ΔV = 3.5 km/s also detected towards Orion-KL, W51M, W3 IRS5 CSO 10.4-m telescope (Phillips et al. 1992)

  14. H3O+ observations (star-forming regions, MW) Orion-KL 307 GHz APEX 12-m telescope May, 2011 Molaro et al. (unpublished)

  15. H3O+ observations (star-forming regions, MW) Sagittarius B2 (~ 120 pc from the Galactic Center) p-H3O+ 364 GHz p-H3O+ 1632 GHz Palehampton et al. 2007 1655 GHz p-H3O+ ΔQ = Q1632 – Q364 = 2.0+3.5=5.5 line position uncertainties ~5 km/s Infrared Space Observatory (ISO) Δμ/μ < 3 10-6

  16. H3O+ observations (extragalactic) 364 GHz transition local starburst M82 van der Tak et al. 1992 Arp 220 if 364, 307 GHz line position uncertainties ~1 km/s JCMT 15-m telescope then Δμ/μ ~ 3 10-7

  17. Lab frequencies: ε~ 1 m/s 307.192406 GHz ε~ 1 m/s 364.797438 GHz ε~10 m/s (unresolved hfs components) p-H3O+ p-H3O+ withε~ 10 m/s limit on Δμ/μ ~ 3 10-9 (para-hydronium only)

  18. Conclusion High precision line position measurements ~ 0.01 km/s (Galactic molecular clouds) ~ 1 km/s (extragalactic molecular clouds) provide with ALMA facilities Δμ/μ ~ 3 10-9 (p-H3O+) Galactic ~ 10-8 (p-NH3 ) Δμ/μ ~ 3 10-7 (p-H3O+) extragalactic ~ 10-6 (p-NH3 ) Atacama Large Millimeter Array (ALMA) 0.3-9.6 mm