1 / 6

Lowest Common Ancestors

1. 2. 8. 8. 3. 4. 5. 6. 7. Lowest Common Ancestors. Two vertices (u, v) Lowest common ancestors, lca (u, v). Example. lca (5, 6) = 4 lca (3, 7) = 2 lca (7, 8) = 1. l(v): left most appearance of v r(v): right most appearance of v If r(u) &lt; l(v) then

Lowest Common Ancestors

An Image/Link below is provided (as is) to download presentation Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript

1. 1 2 8 8 3 4 5 6 7 Lowest Common Ancestors Two vertices (u, v) Lowest common ancestors, lca (u, v) Example lca (5, 6) = 4 lca (3, 7) = 2 lca (7, 8) = 1 l(v): left most appearance of v r(v): right most appearance of v If r(u) < l(v) then lca (u,v) is the vertex with minimum level over the interval [r(u), l(v)] How to find [r(u), l(v)] efficiently?

2. p=[5,5,3,3,3,1,1,1] s=[1,1,1,1,1,1,2,2] p=[5,5,3,3] s=[3,3,3,4] p=[7,1,1,1] s=[1,1,2,2] p=[5,5] s=[5,10] p=[3,3] s=[3,4] p=[7,1] s=[1,1] p=[8,2] s=[2,2] 5 10 3 4 7 1 8 2 Range Minima Problem Let {s1,s2,s3,s4,s5,s6,s7,s8} = {5,10,3,4,7,1,8,2} Given i, j, how to find min {ai...aj} in constant time? v1 • Approach: • Prefix min • Suffix min v3 min {ak..al} 1. Find lca w of ak and al in a complete binary tree Let x: left child, y: right child of w 2.suffix min of k in x 3. prefix min of l in y 4. take min of 2 and 3 Example {a3..a5} w = v1 suffix min of 3rd in v2 = 3 prefix min of 5th in v3 =7 min {a3..a5} = 3 v2 v4 v6 v7 v5

3. 12 4 7 9 2 6 3 4 1 5 Applications: Computing the minimum of its descendants Example For each vi, compute xi = minimum aj among all its descendants vj of vi Then xi = min {ak .. aj }, where k is preorder (vi) and j = k + descendants of (vi) -1

4. Complexity of Range Minima • Two part: • Initial construction • Searching Construction: Merging P [ i.. j] P [ j+1.. k] O ( log n ) time with O ( n ) PEs P’ [ i .. k] parent copy  Each level of three O (1) total time O (log n) time for constructing the P, S lists min (, p[j+1]) Searching: Constant time

5. 1 2 8 9 3 4 5 6 7 Breadth First Traversal level 0 level 1 Eulerian Tour ET = (v1,v2), (v2,v3), (v3,v2), (v2,v4), (v4,v5), (v5,v4), (v4,v6), (v6,v4), (v4,v7), (v7,v4), (v4,v2), (v2,v1), (v1,v8), (v8,v1), (v1,v9), (v9,v1) BFS: 1, 2, 8, 9, 3, 4, 5, 6, 7 • Remove the left most edges, and right most edges from ET • ET’ = (v1,v2), (v2,v3), (v3,v2), (v2,v4), (v4,v5), (v5,v4), (v4,v6), (v6,v4), (v4,v7), (v7,v4),(v4,v2), (v2,v1), (v1,v8), (v8,v1), (v1,v9), (v9,v1) • How to detect? • Prefix maxima, and suffix maxia of edge level • If prefix max has ai - ai-1 > 0 then i-th edge is a leftmost edge • Back Edge: “( “ Advance edge: “)” • find mate of each parenthesis • Mostly well defined • If (vi,vj) is the right most edge at level k, • then its mate is leftmost edge at level k+1 (if it exists) • (vk,vl) is a mate of (vi,vj) then make a link vk -> vi • (vi,vj) is the first edge, vi -> vj

6. Generalized Prefix Computation • Next class: read section 4.9

More Related