22 322 mechanical design ii n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
22.322 Mechanical Design II PowerPoint Presentation
Download Presentation
22.322 Mechanical Design II

Loading in 2 Seconds...

play fullscreen
1 / 13

22.322 Mechanical Design II - PowerPoint PPT Presentation


  • 110 Views
  • Uploaded on

22.322 Mechanical Design II. Spring 2013. Exam #1 Re-do Problem Solutions. Problem 3. N2=35 N3=(2.5)(10) = 25 N4=55 N5=(7)(5)=35 N6=(9)(5)=45. +2. +2. +2. Exam #1 Re-do Problem Solutions. Problem 4. Lecture 18. Balancing.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

22.322 Mechanical Design II


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
    Presentation Transcript
    1. 22.322 Mechanical Design II Spring 2013

    2. Exam #1 Re-do Problem Solutions Problem 3 N2=35 N3=(2.5)(10) = 25 N4=55 N5=(7)(5)=35 N6=(9)(5)=45 +2 +2 +2

    3. Exam #1 Re-do Problem Solutions Problem 4

    4. Lecture 18 Balancing • Rotating parts should be designed to be inherently balanced by their geometry. • An unbalance in machines is attributed to irregularities such as machining errors, size variation in bolts, nuts, welds, etc., wear and particle accumulation. • To balance a shaft, disk, or gear, we need to determine the size and location of the eccentric mass. • Then, to correct the problem we can make the mass distribution symmetrical by adding or removing weight • Unbalance in rotating machines occurs when a rotating member does not possess symmetry with respect to mass • Examples: automobile tire, washing machine

    5. Lecture 18 V2 w2R R mw2R

    6. Lecture 18 F kx cx

    7. Lecture 18

    8. Lecture 18 • For a car, tire and rim balancing is necessary from time to time. • A static wheel balance entails placing the wheel in a horizontal plane suspended by a cone through its center hole. • A bubble level is attached to the wheel and weights are added to the rim until the wheel sits level. • This type of balancing is generally no longer done because it neglects the effect of unbalanced moments.

    9. Lecture 18

    10. Lecture 18

    11. Lecture 18

    12. Lecture 18 • To perform a dynamic balance of an automobile wheel, the following setup is typically used:

    13. Lecture 18 Example