1 / 6

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification. Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock. Small-Signal Model of BJT. Using 2-port y -parameter network,

Download Presentation

Chapter 13 Small-Signal Modeling and Linear Amplification

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 13Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock Microelectronic Circuit Design, 3E McGraw-Hill

  2. Small-Signal Model of BJT Using 2-port y-parameter network, The port variables can represent either time-varying part of total voltages and currents or small changes in them away from Q-point values. bo is the small-signal common-emitter current gain of the BJT. Microelectronic Circuit Design, 3E McGraw-Hill

  3. Hybrid-Pi Model of BJT Transconductance: Input resistance: • The hybrid-pi small-signal model is the intrinsic representation of the BJT. • Small-signal parameters are controlled by the Q-point and are independent of geometry of the BJT Output resistance: Microelectronic Circuit Design, 3E McGraw-Hill

  4. Equivalent Forms of Small-Signal Model for BJT • Voltage -controlled current source gmvbe can be transformed into current-controlled current source, • Basic relationship ic = bib is useful in both dc and ac analysis when BJT is in forward-active region. Microelectronic Circuit Design, 3E McGraw-Hill

  5. Small-Signal Model for the MOSFET Using 2-port y-parameter network, The port variables can represent either time-varying part of total voltages and currents or small changes in them away from Q-point values. Microelectronic Circuit Design, 3E McGraw-Hill

  6. Small-Signal Parameters of MOSFET Transconductance: Output resistance: • Since gate is insulated from channel by gate-oxide input resistance of transistor is infinite. • Small-signal parameters are controlled by the Q-point. • For same operating point, MOSFET has higher transconductance and lower output resistance that BJT. Amplification factor for lVDS<<1: Microelectronic Circuit Design, 3E McGraw-Hill

More Related